GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Molecular Medicine, Springer Science and Business Media LLC, Vol. 26, No. 1 ( 2020-12)
    Abstract: Exposure to ionizing radiation induces complex stress responses in cells, which can lead to adverse health effects such as cancer. Although a variety of studies investigated gene expression and affected pathways in human fibroblasts after exposure to ionizing radiation, the understanding of underlying mechanisms and biological effects is still incomplete due to different experimental settings and small sample sizes. Therefore, this study aims to identify the time point with the highest number of differentially expressed genes and corresponding pathways in primary human fibroblasts after irradiation at two preselected time points. Methods Fibroblasts from skin biopsies of 15 cell donors were exposed to a high (2Gy) and a low (0.05Gy) dose of X-rays. RNA was extracted and sequenced 2 h and 4 h after exposure. Differentially expressed genes with an adjusted p -value 〈  0.05 were flagged and used for pathway analyses including prediction of upstream and downstream effects. Principal component analyses were used to examine the effect of two different sequencing runs on quality metrics and variation in expression and alignment and for explorative analysis of the radiation dose and time point of analysis. Results More genes were differentially expressed 4 h after exposure to low and high doses of radiation than after 2 h. In experiments with high dose irradiation and RNA sequencing after 4 h, inactivation of the FAT10 cancer signaling pathway and activation of gluconeogenesis I , glycolysis I, and prostanoid biosynthesis was observed taking p -value ( 〈  0.05) and (in) activating z-score (≥2.00 or ≤ − 2.00) into account. Two hours after high dose irradiation, inactivation of small cell lung cancer signaling was observed. For low dose irradiation experiments, we did not detect any significant ( p   〈  0.05 and z-score ≥ 2.00 or ≤ − 2.00) activated or inactivated pathways for both time points. Conclusions Compared to 2 h after irradiation, a higher number of differentially expressed genes were found 4 h after exposure to low and high dose ionizing radiation. Differences in gene expression were related to signal transduction pathways of the DNA damage response after 2 h and to metabolic pathways, that might implicate cellular senescence, after 4 h. The time point 4 h will be used to conduct further irradiation experiments in a larger sample.
    Type of Medium: Online Resource
    ISSN: 1076-1551 , 1528-3658
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 1475577-4
    detail.hit.zdb_id: 1283676-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Molecular Medicine, Springer Science and Business Media LLC, Vol. 28, No. 1 ( 2022-12)
    Abstract: The etiology and most risk factors for a sporadic first primary neoplasm in childhood or subsequent second primary neoplasms are still unknown. One established causal factor for therapy-associated second primary neoplasms is the exposure to ionizing radiation during radiation therapy as a mainstay of cancer treatment. Second primary neoplasms occur in 8% of all cancer survivors within 30 years after the first diagnosis in Germany, but the underlying factors for intrinsic susceptibilities have not yet been clarified. Thus, the purpose of this nested case–control study was the investigation and comparison of gene expression and affected pathways in primary fibroblasts of childhood cancer survivors with a first primary neoplasm only or with at least one subsequent second primary neoplasm, and controls without neoplasms after exposure to a low and a high dose of ionizing radiation. Methods Primary fibroblasts were obtained from skin biopsies from 52 adult donors with a first primary neoplasm in childhood (N1), 52 with at least one additional primary neoplasm (N2+), as well as 52 without cancer (N0) from the KiKme study. Cultured fibroblasts were exposed to a high [2 Gray (Gy)] and a low dose (0.05 Gy) of X-rays. Messenger ribonucleic acid was extracted 4 h after exposure and Illumina-sequenced. Differentially expressed genes (DEGs) were computed using limma for R, selected at a false discovery rate level of 0.05, and further analyzed for pathway enrichment (right-tailed Fisher’s Exact Test) and (in-) activation (z ≥|2|) using Ingenuity Pathway Analysis . Results After 0.05 Gy, least DEGs were found in N0 (n = 236), compared to N1 (n = 653) and N2+ (n = 694). The top DEGs with regard to the adjusted p -value were upregulated in fibroblasts across all donor groups ( SESN1 , MDM2 , CDKN1A , TIGAR , BTG2 , BLOC1S2 , PPM1D , PHLDB3 , FBXO22 , AEN , TRIAP1 , and POLH) . Here, we observed activation of p53 Signaling in N0 and to a lesser extent in N1, but not in N2+. Only in N0, DNA (excision-) repair (involved genes: CDKN1A , PPM1D , and DDB2 ) was predicted to be a downstream function, while molecular networks in N2+ were associated with cancer, as well as injury and abnormalities (among others, downregulation of MSH6 , CCNE2 , and CHUK ). After 2 Gy, the number of DEGs was similar in fibroblasts of all donor groups and genes with the highest absolute log 2 fold-change were upregulated throughout ( CDKN1A, TIGAR, HSPA4L , MDM2 , BLOC1SD2 , PPM1D , SESN1 , BTG2 , FBXO22 , PCNA , and TRIAP1 ). Here, the p53 Signaling - Pathway was activated in fibroblasts of all donor groups. The Mitotic Roles of Polo Like Kinase - Pathway was inactivated in N1 and N2+. Molecular Mechanisms of Cancer were affected in fibroblasts of all donor groups. P53 was predicted to be an upstream regulator in fibroblasts of all donor groups and E2F1 in N1 and N2+. Results of the downstream analysis were senescence in N0 and N2+, transformation of cells in N0, and no significant effects in N1. Seven genes were differentially expressed in reaction to 2 Gy dependent on the donor group ( LINC00601 , COBLL1 , SESN2 , BIN3 , TNFRSF10A , EEF1AKNMT , and BTG2 ). Conclusion Our results show dose-dependent differences in the radiation response between N1/N2+ and N0. While mechanisms against genotoxic stress were activated to the same extent after a high dose in all groups, the radiation response was impaired after a low dose in N1/N2+, suggesting an increased risk for adverse effects including carcinogenesis, particularly in N2+.
    Type of Medium: Online Resource
    ISSN: 1076-1551 , 1528-3658
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 1475577-4
    detail.hit.zdb_id: 1283676-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Molecular Medicine, Springer Science and Business Media LLC, Vol. 29, No. 1 ( 2023-03-30)
    Abstract: Differential expression analysis is usually adjusted for variation. However, most studies that examined the expression variability (EV) have used computations affected by low expression levels and did not examine healthy tissue. This study aims to calculate and characterize an unbiased EV in primary fibroblasts of childhood cancer survivors and cancer-free controls (N0) in response to ionizing radiation. Methods Human skin fibroblasts of 52 donors with a first primary neoplasm in childhood (N1), 52 donors with at least one second primary neoplasm (N2 +), as well as 52 N0 were obtained from the KiKme case–control study and exposed to a high (2 Gray) and a low dose (0.05 Gray) of X-rays and sham- irradiation (0 Gray). Genes were then classified as hypo-, non-, or hyper-variable per donor group and radiation treatment, and then examined for over-represented functional signatures. Results We found 22 genes with considerable EV differences between donor groups, of which 11 genes were associated with response to ionizing radiation, stress, and DNA repair. The largest number of genes exclusive to one donor group and variability classification combination were all detected in N0: hypo-variable genes after 0 Gray (n = 49), 0.05 Gray (n = 41), and 2 Gray (n = 38), as well as hyper-variable genes after any dose (n = 43). While after 2 Gray positive regulation of cell cycle was hypo-variable in N0, ( regulation of ) fibroblast proliferation was over-represented in hyper-variable genes of N1 and N2+. In N2+, 30 genes were uniquely classified as hyper-variable after the low dose and were associated with the ERK1/ERK2 cascade. For N1, no exclusive gene sets with functions related to the radiation response were detected in our data. Conclusion N2+ showed high degrees of variability in pathways for the cell fate decision after genotoxic insults that may lead to the transfer and multiplication of DNA-damage via proliferation, where apoptosis and removal of the damaged genome would have been appropriate. Such a deficiency could potentially lead to a higher vulnerability towards side effects of exposure to high doses of ionizing radiation, but following low-dose applications employed in diagnostics, as well.
    Type of Medium: Online Resource
    ISSN: 1528-3658
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 1475577-4
    detail.hit.zdb_id: 1283676-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...