GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-09
    Description: Shifts in the timing and magnitude of the spring plankton bloom in response to climate change have been observed across a wide range of aquatic systems. We used meta-analysis to investigate phenological responses of marine and freshwater plankton communities in mesocosms subjected to experimental manipulations of temperature and light intensity. Systems differed with respect to the dominant mesozooplankton (copepods in seawater and daphnids in freshwater). Higher water temperatures advanced the bloom timing of most functional plankton groups in both marine and freshwater systems. In contrast to timing, responses of bloom magnitudes were more variable among taxa and systems and were influenced by light intensity and trophic interactions. Increased light levels increased the magnitude of the spring peaks of most phytoplankton taxa and of total phytoplankton biomass. Intensified size-selective grazing of copepods in warming scenarios affected phytoplankton size structure and lowered intermediate (20–200 μm)-sized phytoplankton in marine systems. In contrast, plankton peak magnitudes in freshwater systems were unaffected by temperature, but decreased at lower light intensities, suggesting that filter feeding daphnids are sensitive to changes in algal carrying capacity as mediated by light supply. Our analysis confirms the general shift toward earlier blooms at increased temperature in both marine and freshwater systems and supports predictions that effects of climate change on plankton production will vary among sites, depending on resource limitation and species composition.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-09
    Description: The response of the Baltic Sea spring bloom was studied in mesocosm experiments, where temperatures were elevated up to 6°C above the present-day sea surface temperature of the spring bloom season. Four of the seven experiments were carried out at different light levels (32–202 Wh m −2 at the start of the experiments) in the different experimental years. In one further experiment, the factors light and temperature were crossed, and in one experiment, the factors density of overwintering zooplankton and temperature were crossed. Overall, there was a slight temporal acceleration of the phytoplankton spring bloom, a decline of peak biomass and a decline of mean cell size with warming. The temperature influence on phytoplankton bloom timing, biomass and size structure was qualitatively highly robust across experiments. The dependence of timing, biomass, and size structure on initial conditions was tested by multiple regression analysis of the y-temperature regressions with the candidate independent variables initial light, initial phytoplankton biomass, initial microzooplankton biomass, and initial mesozooplankton (=copepod) biomass. The bloom timing predicted for mean temperatures (5.28°C) depended on light. The peak biomass showed a strong positive dependence on light and a weaker negative dependence on initial copepod density. Mean phytoplankton cell size predicted for the mean temperature responded positively to light and negatively to copepod density. The anticipated mismatch between phytoplankton supply and food demand by newly hatched copepod nauplii occurred only under the combination of low light and warm temperatures. The analysis presented here confirms earlier conclusions about temperature responses that are based on subsets of our experimental series. However, only the comprehensive analysis across all experiments highlights the importance of the factor light.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-09
    Description: Indoor mesocosm experiments were conducted to test for potential climate change effects on the spring succession of Baltic Sea plankton. Two different temperature (Δ0 °C and Δ6 °C) and three light scenarios (62, 57 and 49 % of the natural surface light intensity on sunny days), mimicking increasing cloudiness as predicted for warmer winters in the Baltic Sea region, were simulated. By combining experimental and modeling approaches, we were able to test for a potential dietary mismatch between phytoplankton and zooplankton. Two general predator–prey models, one representing the community as a tri-trophic food chain and one as a 5-guild food web were applied to test for the consequences of different temperature sensitivities of heterotrophic components of the plankton. During the experiments, we observed reduced time-lags between the peaks of phytoplankton and protozoan biomass in response to warming. Microzooplankton peak biomass was reached by 2.5 day °C−1 earlier and occurred almost synchronously with biomass peaks of phytoplankton in the warm mesocosms (Δ6 °C). The peak magnitudes of microzooplankton biomass remained unaffected by temperature, and growth rates of microzooplankton were higher at Δ6 °C (μ∆0 °C = 0.12 day−1 and μ∆6 °C = 0.25 day−1). Furthermore, warming induced a shift in microzooplankton phenology leading to a faster species turnover and a shorter window of microzooplankton occurrence. Moderate differences in the light levels had no significant effect on the time-lags between autotrophic and heterotrophic biomass and on the timing, biomass maxima and growth rate of microzooplankton biomass. Both models predicted reduced time-lags between the biomass peaks of phytoplankton and its predators (both microzooplankton and copepods) with warming. The reduction of time-lags increased with increasing Q10 values of copepods and protozoans in the tritrophic food chain. Indirect trophic effects modified this pattern in the 5-guild food web. Our study shows that instead of a mismatch, warming might lead to a stronger match between protist grazers and their prey altering in turn the transfer of matter and energy toward higher trophic levels.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: A comparative analysis of data, obtained during four indoor-mesocosm experiments with natural spring plankton communities from the Baltic Sea, was conducted to investigate whether biogeochemical cycling is affected by an increase in water temperature of up to 6 °C above present-day conditions. In all experiments, warming stimulated in particular heterotrophic bacterial processes and had an accelerating effect on the temporal development of phytoplankton blooms. This was also mirrored in the build-up and partitioning of organic matter between particulate and dissolved phases. Thus, warming increased both the magnitude and rate of dissolved organic carbon (DOC) build-up, whereas the accumulation of particulate organic carbon (POC) and phosphorus (POP) decreased with rising temperature. In concert, the observed temperature-mediated changes in biogeochemical components suggest strong shifts in the functioning of marine pelagic food webs and the ocean’s biological carbon pump, hence providing potential feedback mechanisms to Earth’s climate system.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Springer
    In:  EPIC3Handbook on Marine Environment Protection, Cham, Switzerland, Springer, 21 p., pp. 353-373, ISBN: 978-3-319-60156-4
    Publication Date: 2018-02-09
    Description: In this chapter, the effects of temperature change—as a main aspect of climate change—on marine biodiversity are assessed. Starting from a general discussion of species responses to temperature, the chapter presents how species respond to warming. These responses comprise adaptation and phenotypic plasticity as well as range shifts. The observed range shifts show more rapid shifts at the poleward range edge than at the equator-near edge, which probably reflects more rapid immigration than extinction in a warming world. A third avenue of changing biodiversity is change in species interactions, which can be altered by temporal and spatial shifts in interacting species. We then compare the potential changes in biodiversity to actual trends recently addressed in empirical synthesis work on local marine biodiversity, which lead to conceptual issues in quantifying the degree of biodiversity change. Finally we assess how climate change impacts the protection of marine environments.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...