GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2056
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Stomach contents of 275 postlarval and 269 one year old juvenile Pleuragramma antarcticum caught in February 1982, March 1981 and November 1977 in the Bransfield Strait and adjacent waters were investigated. Juveniles in November 1977 fed mainly on calanoid copepods and Oithona spp. The principal food of postlarvae in February 1982 were Oncaea spp., eggs of calanoid copepods and tintinnids whereas the staple food of juveniles in February 1982 consisted of calanoid copepods of which copepodites of Calanus propinquus were most abundant. Eggs of Euphausia superba were frequently ingested by postlarvae and were the main component of the juvenile diet in the Antarctic Sound. Postlarvae in March 1981 preyed on Oncaea spp. and calanoid eggs. There was a shift from feeding on cyclopoid copepods by postlarvae to feeding on calanoids by juveniles. The food particle size increased as a function of fish length. Maximum prey size was controlled by mouth width up to at least 45 mm standard length. Prey selection was apparently food density dependent with an inverse relationship between food abundance and selective feeding. Density dependent size selection may have resulted in resource partitioning among postlarval and juvenile fishes in February. This specific feeding behaviour is likely to be an adaptation to the low zooplankton stocks of the high Antarctic shelf waters to minimize food competition among the youngest age classes. Predation on krill eggs indicated that the frequent association of one year old juvenile Pleuragramma antarcticum with the Antarctic krill is related to local spawning events.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Polar biology 11 (1991), S. 117-127 
    ISSN: 1432-2056
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Ichthyoplankton was sampled from the Antarctic Peninsula area of the South Polar Ocean in early winter (May and June 1986). A total of 153 eggs from two species and 1368 larvae or juvenile stages from 12 species were obtained. These included pelagic species, and demersal species with a long pelagic larval or juvenile phase. Most abundant were larvae of Pleuragramma antarcticum and Notothenia kempi, and eggs of Notothenia neglecta. The distribution of notothenioid and paralepidid larvae was apparently unaffected by ice cover, whereas myctophid larvae were confined to ice-free waters. Areas where newly hatched Chionodraco hamatus occurred coincided with dense aggregations of Euphausia superba (Krill) furcilia larvae which is a potential food resource during winter. The hatching of icefish larvae during winter is apparently independent of the seasonal production cycle. Epipelagic eggs of Notothenia neglecta were found during the spawning season, which suggests that eggs ascend to the surface after demersal spawning and that development takes place near the sea surface during winter. Larvae of Notothenia kempi were chiefly confined to shelf and slope waters to the west of the Antarctic Peninsula, with larger larvae found in coastal shelf areas. Pleuragramma antarcticum occurred in the coastal waters off the Biscoe Islands, in the Gerlache Strait, and in the northern Bransfield Strait. The smallest larvae were found in the northern Bransfield Strait, whereas those at the Biscoe Islands and in Gerlache Strait waters were larger and of a similar size. A cyclonic gyre to the west of the Antarctic Peninsula observed in the austral summer was likely to have affected the larval drift of Pleuragramma antarcticum and Notothenia kempi. Differences in the timing of spawning and hatching and the vertical distribution of these larvae will lead to different transport and spatial distribution patterns. It is hypothesized that early winter conditions do not imply severe limitations on the year-class success of larval fish. Dispersal and increased mortality may occur during the second half of the winter.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...