GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Astrophysics and space science 29 (1974), S. 63-159 
    ISSN: 1572-946X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract In this fourth and last part of our analysis, the first section (14) contains a study of the chemical composition of the planets and satellites. A sharp distinction is made between the large quantity of speculations about the interiors of the bodies and the rather meagerfacts known with a reasonable degree of certainty. It is shown, however, that the latter are sufficient todisprove the old concept of a Laplacian disc of homogeneous chemical composition. There is asystematic variations in the chemical composition of planets (and probably also of satellites) so that heavy elements are more abundant in the outermost and in the innermost regions of the systems. Section 15 containsa study of meteorites. These have earlier been interpreted in terms of ‘exploded planets’ and condensation processes in thermodynamic equilibrium. It is shown that such models are irreconcilable with the laws of physics and also with the meteoritic observations. These instead are found toprovide abundant information on the processes in jet streams and on early fractionation and condensation. Further work along these lines supplemented with other solar system materials studies may lead to a detailed reconstruction of important events in the evolution of the solar system. Section 16 demonstrates that the location of the different groups of secondary bodies is a result of a plasma phenomenon occurring at the critical velocity limit. These have recently been studied in detail in the laboratory but have not yet been fully applied to astrophysics.Groups of bodies in the planetary and the satellite systems related by the critical velocity shouldhave the same gravitational potential. There are large chemical differences between groups of different gravitational potential. This is reconcilable with the chemical differentiation found in Section 14. Finally, Section 17 deals with thestructure of the different groups of bodies and shows that the mass distributionis a function of the spin of the central body. Summarizing the properties and distribution of bodies in the solar system against this background, it is shown that there isno need for ‘missing planets’ or to explode hypothetical large bodies. Nor is there any justification for involvingdrastic ad hoc changes in the orbits of existing bodies. The scheme is complete in the sense that in all places where groups of bodies are expected, such bodies are actually found. All of the existing bodies are accounted for (with the exception of the small Martian satellites!). The general conclusion is that already with the empirical material now availableit is possible to suggest a series of basic processes leading to the present structure of planet and satellite systems in an internally consistent way. With the expected flow of data from space research the evolution of the solar system may eventually be described with about the same confidence and accuracy as the geological evolution of the Earth.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Astrophysics and space science 55 (1978), S. 2-5 
    ISSN: 1572-946X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Astrophysics and space science 9 (1970), S. 3-33 
    ISSN: 1572-946X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract (7)Formation of celestial bodies. The basic concepts of the accretional process are discussed, and the inadequacy of the contractional model is pointed out. A comparison is made between the general pre-planetary state on the one hand and the present state in the asteroidal region on the other. A model for accretion of resonance-captured grains leading to the formation of resonance-captured planets and satellites is suggested. (8)Spin and accretion. The relation between the accretional process and the spin of planets is analyzed. (9)Accretion of planets and satellites. It is shown that jet streams are a necessary intermediate stage in the formation of celestial bodies. The time sequence of planet formation is analyzed, and it is shown that the newly accreted bodies have a characteristic internal heat structure; the cases of the Earth and the Moon are considered in detail. A region of high initial temperature is found at 0.4 of the present Earth radius, whereas the culminating temperature of the Moon is near its present surface. An accretional heat wave is found to proceed outwards, and may produce the observed differentiation features.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Naturwissenschaften 59 (1972), S. 183-187 
    ISSN: 1432-1904
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Earth, moon and planets 5 (1972), S. 210-230 
    ISSN: 1573-0794
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The origin and evolution of the Earth-Moon system is studied by comparing it to the satellite systems of other planets. The normal structure of a system of secondary bodies orbiting around a central body depends essentially on the mass of the central body. The Earth with a mass intermediate between Uranus and Mars should have a ‘normal’ satellite system that consists of about half a dozen satellites each with a mass of a fraction of a percent of the lunar mass. Hence, the Moon is not likely to have been generated in the environment of the Earth by a normal accretion process as is claimed by some authors. Capture of satellites is quite a common process as shown by the fact that there are six satellites in the solar system which, because they are retrograde, must have been captured. There is little doubt that the Moon is also a captured satellite, but its capture orbit and tidal evolution are still incompletely understood. The Earth and the Moon are likely to have been formed from planetesimals accreting in particle swarms in Kepler orbits (jet streams). This process leads to the formation of a cool lunar interior with an outer layer accreted at increasingly higher temperatures. The primeval Earth should similarly have formed with a cool inner core surrounded in this case by a very strongly heated outer core and with a mantle accreted slowly and with a low average temperature but with intense transient heating at each individual impact site.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Origins of life and evolution of the biospheres 26 (1996), S. 240-241 
    ISSN: 1573-0875
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Astrophysics and space science 144 (1988), S. 357-372 
    ISSN: 1572-946X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Alfvén in his early work on the origin of the solar system (1942–1946) noted a pronounced band structure in the gravitational potential distribution of secondary bodies, and suggested this feature to be directly related to the formation process. When the critical velocity phenomenon was later discovered, a close agreement was found between the planet-satellite bands on one hand, and the critical velocity limits of the major compound elements in the interstellar medium on the other, suggesting a specific emplacement mechanism for the dusty plasma which presumably constituted the solar nebula. Since the originally perceived band structure was outlined in a qualitative fashion, an attempt is made here to analyze the distribution by a statistical technique, testing the significance of clustering of the observational data in the bands. The results show that, with proper scaling of the parameters, such a band structure indeed appears, with features closely similar to those originally conceived. Some deviations are indicated by the cluster analysis, however; their significance is discussed in terms of process involved in the formation of the solar system.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Astrophysics and space science 21 (1973), S. 117-176 
    ISSN: 1572-946X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Parts I and II of our analysis of the evolution of the solar system were devoted mainly to the mechanical processes. The present part (Part III) deals primarily with the plasma processes and the hydromagnetic aspects. Much confusion in the cosmogonic field is due to the treatment of the early phases of the evolution of a circumstellar medium by pre-hydromagnetic methods, or by erroneous application of magnetohydrodynamics. In order to reduce the speculative element as far as possible the present analysis tries to connect the cosmogonic processes as directly as possible to laboratory plasma physics and to space phenomena actually observed today (Section 10). Models of the Laplacian type have been made obsolete by magnetohydrodynamics. Furthermore they are in conflict with observations. A new model is suggested (Section 11). A plasma surrounding a rotating central body may attain a state of partial corotation which is determined by the balance between gravitation and the centrifugal force acting on a plasma in a dipole field. Condensation from a partially corotating plasma results in grains orbiting in ellipses withe=1/3 and finally accreting to bodies at 2/3 of the central distance of the point of condensation (Section 12). An application of the theory to the Saturnian rings and to the asteroidal belt shows that the falldown ratio 2/3 (derived from the geometry of a dipole field) is essential for the understanding of their structure. The structure of the groups of planets and satellites is also discussed but only in a preliminary way. The behavior of volatile substances is a major problem which still awaits an appropriate treatment (Section 13).
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Origins of life and evolution of the biospheres 27 (1997), S. 485-503 
    ISSN: 1573-0875
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Notes: Abstract Bilateral surface-active minerals with excess positive charge concentrate glycolate and trimetaphosphate ion from 10−3 m aqueous solution to half-saturation of the internal surface sites, and induce phosphorylation of glycolate ion in the mineral with trimetaphosphate, sorbed from 10−2 m solution. By utilizing reactants from dilute solution at near-neutral pH, and eliminating the need for participating organic nitrogen compounds, the reaction comprises several elements considered necessary for geochemical realism in models for molecular evolution.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Origins of life and evolution of the biospheres 29 (1999), S. 333-354 
    ISSN: 1573-0875
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Notes: Abstract Amidotriphosphate (0.1 M) in aqueous solution at near neutral pH in the presence of magnesium ions (0.25 M) converts glycolaldehyde (0.025 M) within days at room temperature into glycolaldehyde phosphate in (analytically) nearly quantitative yields (76% in isolated product). This robust phosphorylation process was observed to proceed at concentrations as low as 30 μM glycolaldehyde and 60 μM phosphorylation reagent under otherwise identical conditions. In sharp contrast, attempts to achieve a phosphorylation of glycolaldehyde with cyclotriphosphate (‘trimetaphosphate’) as phosphorylating reagent were unsuccessful. Mechanistically, the phosphorylation of glycolaldehyde with amidotriphosphate is an example of intramolecular delivery of the phosphate group.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...