GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Society for Neuroscience ; 2016
    In:  eneuro Vol. 3, No. 5 ( 2016-09), p. ENEURO.0139-16.2016-
    In: eneuro, Society for Neuroscience, Vol. 3, No. 5 ( 2016-09), p. ENEURO.0139-16.2016-
    Abstract: Our remarkable ability to process complex visual scenes is supported by a network of scene-selective cortical regions. Despite growing knowledge about the scene representation in these regions, much less is known about the temporal dynamics with which these representations emerge. We conducted two experiments aimed at identifying and characterizing the earliest markers of scene-specific processing. In the first experiment, human participants viewed images of scenes, faces, and everyday objects while event-related potentials (ERPs) were recorded. We found that the first ERP component to evince a significantly stronger response to scenes than the other categories was the P2, peaking ∼220 ms after stimulus onset. To establish that the P2 component reflects scene-specific processing, in the second experiment, we recorded ERPs while the participants viewed diverse real-world scenes spanning the following three global scene properties: spatial expanse (open/closed), relative distance (near/far), and naturalness (man-made/natural). We found that P2 amplitude was sensitive to these scene properties at both the categorical level, distinguishing between open and closed natural scenes, as well as at the single-image level, reflecting both computationally derived scene statistics and behavioral ratings of naturalness and spatial expanse. Together, these results establish the P2 as an ERP marker for scene processing, and demonstrate that scene-specific global information is available in the neural response as early as 220 ms.
    Type of Medium: Online Resource
    ISSN: 2373-2822
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2016
    detail.hit.zdb_id: 2800598-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Society for Neuroscience ; 2011
    In:  The Journal of Neuroscience Vol. 31, No. 20 ( 2011-05-18), p. 7322-7333
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 31, No. 20 ( 2011-05-18), p. 7322-7333
    Abstract: Real-world scenes are incredibly complex and heterogeneous, yet we are able to identify and categorize them effortlessly. In humans, the ventral temporal parahippocampal place area (PPA) has been implicated in scene processing, but scene information is contained in many visual areas, leaving their specific contributions unclear. Although early theories of PPA emphasized its role in spatial processing, more recent reports of its function have emphasized semantic or contextual processing. Here, using functional imaging, we reconstructed the organization of scene representations across human ventral visual cortex by analyzing the distributed response to 96 diverse real-world scenes. We found that, although individual scenes could be decoded in both PPA and early visual cortex (EVC), the structure of representations in these regions was vastly different. In both regions, spatial rather than semantic factors defined the structure of representations. However, in PPA, representations were defined primarily by the spatial factor of expanse (open, closed) and in EVC primarily by distance (near, far). Furthermore, independent behavioral ratings of expanse and distance correlated strongly with representations in PPA and peripheral EVC, respectively. In neither region was content (manmade, natural) a major contributor to the overall organization. Furthermore, the response of PPA could not be used to decode the high-level semantic category of scenes even when spatial factors were held constant, nor could category be decoded across different distances. These findings demonstrate, contrary to recent reports, that the response PPA primarily reflects spatial, not categorical or contextual, aspects of real-world scenes.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2011
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Society for Neuroscience ; 2015
    In:  The Journal of Neuroscience Vol. 35, No. 4 ( 2015-01-28), p. 1468-1480
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 35, No. 4 ( 2015-01-28), p. 1468-1480
    Abstract: Observing touch has been reported to elicit activation in human primary and secondary somatosensory cortices and is suggested to underlie our ability to interpret other's behavior and potentially empathy. However, despite these reports, there are a large number of inconsistencies in terms of the precise topography of activation, the extent of hemispheric lateralization, and what aspects of the stimulus are necessary to drive responses. To address these issues, we investigated the localization and functional properties of regions responsive to observed touch in a large group of participants ( n = 40). Surprisingly, even with a lenient contrast of hand brushing versus brushing alone, we did not find any selective activation for observed touch in the hand regions of somatosensory cortex but rather in superior and inferior portions of neighboring posterior parietal cortex, predominantly in the left hemisphere. These regions in the posterior parietal cortex required the presence of both brush and hand to elicit strong responses and showed some selectivity for the form of the object or agent of touch. Furthermore, the inferior parietal region showed nonspecific tactile and motor responses, suggesting some similarity to area PFG in the monkey. Collectively, our findings challenge the automatic engagement of somatosensory cortex when observing touch, suggest mislocalization in previous studies, and instead highlight the role of posterior parietal cortex.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2015
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Society for Neuroscience ; 2013
    In:  The Journal of Neuroscience Vol. 33, No. 43 ( 2013-10-23), p. 16983-16991
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 33, No. 43 ( 2013-10-23), p. 16983-16991
    Abstract: An imbalance between cortical excitation and inhibition is a central component of many models of autistic neurobiology. We tested a potential behavioral footprint of this proposed imbalance using binocular rivalry, a visual phenomenon in which perceptual experience is thought to mirror the push and pull of excitatory and inhibitory cortical dynamics. In binocular rivalry, two monocularly presented images compete, leading to a percept that alternates between them. In a series of trials, we presented separate images of objects (e.g., a baseball and a broccoli) to each eye using a mirror stereoscope and asked human participants with autism and matched control subjects to continuously report which object they perceived, or whether they perceived a mixed percept. Individuals with autism demonstrated a slower rate of binocular rivalry alternations than matched control subjects, with longer durations of mixed percepts and an increased likelihood to revert to the previously perceived object when exiting a mixed percept. Critically, each of these findings was highly predictive of clinical measures of autistic symptomatology. Control “playback” experiments demonstrated that differences in neither response latencies nor response criteria could account for the atypical dynamics of binocular rivalry we observed in autistic spectrum conditions. Overall, these results may provide an index of atypical cortical dynamics that may underlie both the social and nonsocial symptoms of autism.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2013
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Society for Neuroscience ; 2006
    In:  The Journal of Neuroscience Vol. 26, No. 50 ( 2006-12-13), p. 13025-13036
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 26, No. 50 ( 2006-12-13), p. 13025-13036
    Abstract: Visual object recognition relies critically on learning. However, little is known about the effect of object learning in human visual cortex, and in particular how the spatial distribution of training effects relates to the distribution of object and face selectivity across the cortex before training. We scanned human subjects with high-resolution functional magnetic resonance imaging (fMRI) while they viewed novel object classes, both before and after extensive training to discriminate between exemplars within one of these object classes. Training increased the strength of the response in visual cortex to trained objects compared with untrained objects. However, training did not simply induce a uniform increase in the response to trained objects: the magnitude of this training effect varied substantially across subregions of extrastriate cortex, with some showing a twofold increase in response to trained objects and others (including the right fusiform face area) showing no significant effect of training. Furthermore, the spatial distribution of training effects could not be predicted from the spatial distribution of either pretrained responses or face selectivity. Instead, training changed the spatial distribution of activity across the cortex. These findings support a dynamic view of the ventral visual pathway in which the cortical representation of an object category is continuously modulated by experience.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2006
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Society for Neuroscience ; 2013
    In:  The Journal of Neuroscience Vol. 33, No. 16 ( 2013-04-17), p. 6776-6781
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 33, No. 16 ( 2013-04-17), p. 6776-6781
    Abstract: Enhanced perception of detail has long been regarded a hallmark of autism spectrum conditions (ASC), but its origins are unknown. Normal sensitivity on all fundamental perceptual measures—visual acuity, contrast discrimination, and flicker detection—is strongly established in the literature. If individuals with ASC do not have superior low-level vision, how is perception of detail enhanced? We argue that this apparent paradox can be resolved by considering visual attention, which is known to enhance basic visual sensitivity, resulting in greater acuity and lower contrast thresholds. Here, we demonstrate that the focus of attention and concomitant enhancement of perception are sharper in human individuals with ASC than in matched controls. Using a simple visual acuity task embedded in a standard cueing paradigm, we mapped the spatial and temporal gradients of attentional enhancement by varying the distance and onset time of visual targets relative to an exogenous cue, which obligatorily captures attention. Individuals with ASC demonstrated a greater fall-off in performance with distance from the cue than controls, indicating a sharper spatial gradient of attention. Further, this sharpness was highly correlated with the severity of autistic symptoms in ASC, as well as autistic traits across both ASC and control groups. These findings establish the presence of a form of “tunnel vision” in ASC, with far-reaching implications for our understanding of the social and neurobiological aspects of autism.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2013
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Society for Neuroscience ; 2018
    In:  The Journal of Neuroscience Vol. 38, No. 9 ( 2018-02-28), p. 2294-2303
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 38, No. 9 ( 2018-02-28), p. 2294-2303
    Abstract: A fundamental feature of cortical visual processing is the separation of visual processing for the upper and lower visual fields. In early visual cortex (EVC), the upper visual field is processed ventrally, with the lower visual field processed dorsally. This distinction persists into several category-selective regions of occipitotemporal cortex, with ventral and lateral scene-, face-, and object-selective regions biased for the upper and lower visual fields, respectively. Here, using an elliptical population receptive field (pRF) model, we systematically tested the sampling of visual space within ventral and dorsal divisions of human EVC in both male and female participants. We found that (1) pRFs tend to be elliptical and oriented toward the fovea with distinct angular distributions for ventral and dorsal divisions of EVC, potentially reflecting a radial bias; and (2) pRFs in ventral areas were larger (∼1.5×) and more elliptical (∼1.2×) than those in dorsal areas. These differences potentially reflect a tendency for receptive fields in ventral temporal cortex to overlap the fovea with less emphasis on precise localization and isotropic representation of space compared with dorsal areas. Collectively, these findings suggest that ventral and dorsal divisions of EVC sample visual space differently, likely contributing to and/or stemming from the functional differentiation of visual processing observed in higher-level regions of the ventral and dorsal cortical visual pathways. SIGNIFICANCE STATEMENT The processing of visual information from the upper and lower visual fields is separated in visual cortex. Although ventral and dorsal divisions of early visual cortex (EVC) are commonly assumed to sample visual space equivalently, we demonstrate systematic differences using an elliptical population receptive field (pRF) model. Specifically, we demonstrate that (1) ventral and dorsal divisions of EVC exhibit diverging distributions of pRF angle, which are biased toward the fovea; and (2) ventral pRFs exhibit higher aspect ratios and cover larger areas than dorsal pRFs. These results suggest that ventral and dorsal divisions of EVC sample visual space differently and that such differential sampling likely contributes to different functional roles attributed to the ventral and dorsal pathways, such as object recognition and visually guided attention, respectively.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2018
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Society for Neuroscience ; 2005
    In:  The Journal of Neuroscience Vol. 25, No. 47 ( 2005-11-23), p. 11055-11059
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 25, No. 47 ( 2005-11-23), p. 11055-11059
    Abstract: Recent reports of a high response to bodies in the fusiform face area (FFA) challenge the idea that the FFA is exclusively selective for face stimuli. We examined this claim by conducting a functional magnetic resonance imaging experiment at both standard (3.125 × 3.125 × 4.0 mm) and high resolution (1.4 × 1.4 × 2.0 mm). In both experiments, regions of interest (ROIs) were defined using data from blocked localizer runs. Within each ROI, we measured the mean peak response to a variety of stimulus types in independent data from a subsequent event-related experiment. Our localizer scans identified a fusiform body area (FBA), a body-selective region reported recently by Peelen and Downing (2005) that is anatomically distinct from the extrastriate body area. The FBA overlapped with and was adjacent to the FFA in all but two participants. Selectivity of the FFA to faces and FBA to bodies was stronger for the high-resolution scans, as expected from the reduction in partial volume effects. When new ROIs were constructed for the high-resolution experiment by omitting the voxels showing overlapping selectivity for both bodies and faces in the localizer scans, the resulting FFA * ROI showed no response above control objects for body stimuli, and the FBA * ROI showed no response above control objects for face stimuli. These results demonstrate strong selectivities in distinct but adjacent regions in the fusiform gyrus for only faces in one region (the FFA * ) and only bodies in the other (the FBA * ).
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2005
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 39, No. 4 ( 2019-01-23), p. 705-717
    Abstract: Human retrosplenial complex (RSC), located in medial parietal cortex, has been implicated in numerous cognitive functions, including scene perception, spatial navigation, and autobiographical memory retrieval. Recently, a posterior–anterior distinction within RSC was proposed, such that posterior aspects process scene-related visual information (constituting a medial place area [MPA]), whereas anterior aspects process information that is vividly retrieved from memory, thereby supporting remembering and potentially navigation. Here, we tested this proposed distinction in a single group of participants (both male and female) using fMRI with both perceptual and mnemonic tasks. After completing a resting-state scan, participants performed a task that required constructing scenes from memory and completed a scene selectivity localizer task. We tested directly perceptual and mnemonic responses in MPA and an anterior, connectivity-defined region (CON), which showed strong functional connectivity with anterior parahippocampal place area. A double dissociation was observed, such that CON was more strongly activated during scene construction than was MPA, whereas MPA was more perceptually responsive than CON. Further, peak responses from the scene construction task were anterior to perceptual peaks in all but 1 participant and hemisphere. Finally, through analyses of the posterior–anterior response profiles, we identify the fundus of the parieto-occipital sulcus as a potential location for the crossover from perceptual to mnemonic representations and highlight a potential left-hemisphere advantage for mnemonic representations. Collectively, our results support a distinction between posterior and anterior aspects of the RSC, suggesting that more specific functional-anatomic terms should be used in its place in future work. SIGNIFICANCE STATEMENT The retrosplenial complex (RSC) has been implicated in vision, spatial cognition, and memory. We previously speculated on a potential posterior–anterior distinction within RSC for scene perception and memory-based scene construction/navigation. Here, we tested this distinction through a combination of resting-state, perceptual, and mnemonic task data. Consistent with our predictions, we demonstrate that perceptual responses peak consistently posterior of those elicited by memory-based scene construction within the broader RSC. Further, we highlight (1) the fundus of the parieto-occipital sulcus as a landmark for the transition between these representations, (2) the anterior bank of parieto-occipital sulcus as the point of maximal separation between these representations, and (3) identify a potential hemispheric asymmetry in mnemonic representations. These data support functional dissociations within RSC.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2019
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Society for Neuroscience ; 2022
    In:  The Journal of Neuroscience Vol. 42, No. 35 ( 2022-08-31), p. 6739-6750
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 42, No. 35 ( 2022-08-31), p. 6739-6750
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2022
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...