GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Photocatalysis.  (1)
  • San Diego :Elsevier,  (1)
Document type
Publisher
  • San Diego :Elsevier,  (1)
Language
Years
  • 1
    Online Resource
    Online Resource
    San Diego :Elsevier,
    Keywords: Photocatalysis. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (796 pages)
    Edition: 1st ed.
    ISBN: 9780128242025
    DDC: 660/.2995
    Language: English
    Note: Front cover -- Half title -- Title -- Copyright -- Contents -- Chapter 1 Novel photocatalytic techniques for organic dye degradation in water -- 1.1 An overview of dye pollution and classification -- 1.2 Existing treatment options -- 1.3 Photocatalysis: basic principle -- 1.4 Novel photocatalytic approaches -- 1.4.1 Titanium dioxide and strategies for improving photoactivity of TiO2 -- 1.4.2 Metal oxides/sulfide/nanocomposites -- 1.4.3 Layered nanocomposites -- 1.5 Mechanisms of photocatalysis: schemes involved in photocatalytic degradation -- 1.6 Type-II heterostructure semiconductors -- 1.6.1 p-n junction semiconductor -- 1.6.2 Z-scheme semiconductor -- 1.7 Factors affecting photocatalysis/photodegradation -- 1.7.1 Effect of pH -- 1.7.2 Effect of irradiation intensity -- 1.7.3 Effect of temperature -- 1.7.4 Effect of photocatalyst loading -- 1.8 Conclusion -- Acknowledgments -- References -- Chapter 2 Effect of operating parameters on photocatalytic degradation of dyes by using graphitic carbon nitride -- 2.1 Introduction -- 2.1.1 Photocatalysis -- 2.1.2 Photocatalyst -- 2.2 Graphitic carbon nitride (g - C3N4) photocatalyst -- 2.2.1 Synthesis techniques of g - C3N4 -- 2.2.2 Modifications of g - C3N4 -- 2.2.3 Composites of g - C3N4 -- 2.3 Degradation of dyes -- 2.4 Operating parameters in photocatalytic degradation -- 2.4.1 Effect of pH -- 2.4.2 Effect of catalyst concentration -- 2.4.3 Effect of light intensity -- 2.4.4 Effect of irradiation time -- 2.4.5 Effect of oxidizing agents -- 2.5 Conclusion -- References -- Chapter 3 Photocatalytic degradation of organic dyes using heterogeneous catalysts -- 3.1 Introduction -- 3.1.1 Types of dyes -- 3.1.2 Type of photocatalysts used -- 3.2 TiO2 catalyst -- 3.2.1 Principle of TiO2 photocatalysis and mechanistic pathways -- 3.2.2 Parameters affecting the photocatalytic degradation. , 3.2.3 Modification of TiO2 -- 3.3 ZnO as catalyst -- 3.3.1 Principle of ZnO photocatalysis and mechanistic pathways -- 3.3.2 Parameters affecting the photocatalytic degradation -- 3.3.3 Modification of ZnO -- 3.4 Other photocatalyst -- 3.5 Degradation study of dyes -- 3.6 Conclusion and outlook -- References -- Chapter 4 Effective materials in the photocatalytic treatment of dyestuffs and stained wastewater -- 4.1 Introduction -- 4.2 Various techniques used for removal of dye from wastewater -- 4.2.1 Adsorption technique -- 4.2.2 Ion exchange -- 4.2.3 Membrane filtration technique -- 4.2.4 Electrochemical method -- 4.2.5 Bioremediation and biodegradation -- 4.2.6 Advanced oxidation process -- 4.3 Photocatalysis -- 4.3.1 Mechanism of photocatalysis -- 4.3.2 Influences of several parameters on photocatalysis -- 4.4 Various dyes that can be treated by photolysis -- 4.4.1 Methylene blue -- 4.4.2 Methyl orange -- 4.4.3 Rhodamine B -- 4.4.4 Malachite green -- 4.4.5 Indigo carmine -- 4.5 Future Scope -- References -- Chapter 5 Sonophotocatalytic degradation of refractory textile dyes -- 5.1 Introduction -- 5.2 Sonochemical process -- 5.3 Photocatalytic process -- 5.4 Sonophotocatalytic reactors -- 5.5 Dyes degradation by sonophotocatalysis -- 5.6 Does sonoluminescence activate photocatalyst? -- 5.7 Source of synergism in sonophotocatalysis -- 5.8 Influencing factors -- 5.8.1 Ultrasonic power -- 5.8.2 Catalyst dosage -- 5.8.3 Dye concentration -- 5.8.4 Solution pH -- 5.8.5 Saturation gases -- 5.8.6 Effect of additives -- 5.9 Conclusions and future perspectives -- References -- Chapter 6 High photocatalytic activity under visible light for dye degradation -- 6.1 Introduction -- 6.2 Fundamentals of photocatalytic dye-degradation reactions -- 6.2.1 Photocatalytic dye degradation reactions mechanism -- 6.2.2 Photocatalytic dye-degradation measurement techniques. , 6.3 Different factors affecting photocatalytic dye degradation -- 6.4 Syntheses of UV-Visible/visible light active photocatalysts -- 6.4.1 Synthesis of TiO2@C nanocomposites -- 6.4.2 Synthesis of MoS2 nanoplatelets, nanorods, and nanosheets -- 6.4.3 Synthesis of flower-like ZnO@MoS2 heterostructures (ZMH) -- 6.5 Structural, optical, and methylene blue dye degradation properties -- 6.5.1 TiO2@C nanocomposites -- 6.5.2 Different MoS2 nanostructures -- 6.5.3 Flower-like ZnO@MoS2 nanostructures -- 6.6 Conclusion -- Acknowledgment -- References -- Chapter 7 Green and sustainable methods of syntheses of photocatalytic materials for efficient application in dye degradation -- 7.1 Introduction -- 7.2 Environmental concern of organic toxic pollutants -- 7.3 Semiconductor nanomaterials as photocatalyst -- 7.3.1 Strategies for improvement of photocatalytic Performance of Semiconductor nanomaterials -- 7.4 Limitations of traditional synthesis methods -- 7.5 Green approach for synthesis of ZnO-based composites materials -- 7.6 Laboratory syntheses of ZnO nanoparticles -- 7.6.1 Phase determination by XRD and morphology analyses -- 7.6.2 Raman data analysis -- 7.6.3 XPS and FTIR data analyses -- 7.6.4 Optical properties of the nanocomposite materials -- 7.7 Photocatalytic mechanism -- 7.7.1 Sun Light-driven photocatalytic dye degradation activity -- 7.8 Several applications of ZnO and ZnO-rGO nanocomposites -- 7.8.1 Self-cleaning property of cotton fabric under sunlight -- 7.8.2 Self-cleaning property of cotton fabric with different cleaning agents under sunlight -- 7.9 Summary -- 7.10 Conclusions and future scope -- Acknowledgement -- References -- Chapter 8 Hybrid systems to improve photo-based processes and their importance in the dye degradation -- 8.1 Introduction -- 8.2 Hybrid systems -- 8.2.1 Common operational aspects effect. , 8.2.2 Photocatalysis-oxidant addition -- 8.2.3 Fenton-photocatalysis -- 8.2.4 Photocatalysis-electro -- 8.2.5 Photocatalysis-electro-Fenton -- 8.2.6 Sono-photocatalysis -- 8.2.7 Adsorption-photocatalysis -- 8.2.8 Membrane-photocatalysis -- 8.2.9 Photocatalysis-biodegradation -- 8.3 General considerations -- 8.3.1 Hybrid process selection -- 8.3.2 Scale-up considerations -- 8.4 Conclusions -- References -- Chapter 9 Photocatalytic metal nanoparticles: a green approach for degradation of dyes -- 9.1 Introduction -- 9.2 Green synthesis of Zinc oxide (ZnO) NPs -- 9.3 Green synthesis of titanium dioxide (TiO2) NPs -- 9.4 Green synthesis of Copper oxide (CuO/Cu2O) NPs -- 9.5 Photocatalytic degradation of toxic dyes -- 9.6 Application of photocatalysts -- 9.7 Mechanism of dye degradation -- 9.7.1 pH -- 9.7.2 Light intensity and irradiation time -- 9.7.3 Photocatalysts load -- 9.7.4 Initial dye concentration -- 9.7.5 Temperature -- 9.8 The bottlenecks of photocatalytic dye degradation using NPs -- 9.9 Reusability of NPs -- 9.10 Aggregation of NPs -- 9.11 Toxicity of NPs -- 9.12 Hybrid systems for dye removal -- 9.13 Conclusions -- References -- Chapter 10 A facile biogenic-mediated synthesis of Ag nanoparticles over anchored ZnO for enhanced photocatalytic degradation of organic dyes -- 10.1 Introduction -- 10.2 Materials and methods -- 10.2.1 Materials -- 10.2.2 Preparation of bark extract -- 10.2.3 Green synthesis of Ag@ZnO -- 10.2.4 Characterization -- 10.2.5 Photocatalytic activity -- 10.2.6 Reuse and recyclability test -- 10.3 Results and discussion -- 10.3.1 Characterization of the catalyst -- 10.3.2 Photocatalytic degradation study -- 10.3.3 Stability and reuse study -- 10.3.4 Plausible photocatalytic reaction mechanism of MB and CR dye degradation -- 10.4 Conclusion -- Acknowledgments -- References. , Chapter 11 Fungus and plant-mediated synthesis of metallic nanoparticles and their application in degradation of dyes -- 11.1 Introduction -- 11.2 Problems associated with dyes -- 11.3 Green synthesis and characterization of nanoparticles -- 11.3.1 Characterization techniques -- 11.3.2 UV-visible spectroscopy -- 11.3.3 X-ray diffraction (XRD) -- 11.3.4 Fourier transform infrared (FTIR) spectroscopy -- 11.3.5 Atomic force microscopy (AFM) -- 11.3.6 Scanning electron microscopy (SEM) -- 11.3.7 Transmission electron microscopy (TEM) -- 11.4 Metallic nanoparticles -- 11.5 Fungal-mediated nanoparticles synthesis -- 11.6 Plant-mediated nanoparticles synthesis -- 11.7 Mechanism of dye degradation by metal nanoparticles -- 11.7.1 Direct photocatalytic degradation -- 11.7.2 Indirect or sensitization-mediated degradation -- 11.8 Factors influencing degradation of dyes -- 11.8.1 pH -- 11.8.2 Concentration of nanoparticles -- 11.8.3 Temperature -- 11.8.4 Irradiation time and light intensity -- 11.8.5 Concentration of dyes -- 11.9 Applications of nanoparticles in dye degradation -- 11.9.1 Fungal-mediated nanoparticles in dye degradation -- 11.9.2 Plant-mediated nanoparticles in dye degradation -- 11.10 Challenges -- 11.11 Conclusion -- References -- Chapter 12 Heterogeneous photocatalysis of organic dyes -- 12.1 Introduction -- 12.2 Background -- 12.2.1 Types/categories of dyes -- 12.2.2 Advancement in degradation of organic dye under heterogeneous photocatalysis -- 12.3 The semiconductor surface for dye adsorption in dark -- 12.4 Dark adsorption of dyes and its efficiency -- 12.5 Photocatalyst details -- 12.5.1 Titanium dioxide -- 12.5.2 Other semiconductors -- 12.6 Photoreactor configurations -- 12.7 Photodecolorization of dye organics -- 12.7.1 Process variables and mechanism for absorption of light by semiconductor. , 12.7.2 Advanced oxidation processes incorporation with sonolysis.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...