GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Royal Society of Chemistry (RSC)  (3)
  • 1
    Online Resource
    Online Resource
    Royal Society of Chemistry (RSC) ; 2022
    In:  Environmental Science: Processes & Impacts Vol. 24, No. 8 ( 2022), p. 1152-1164
    In: Environmental Science: Processes & Impacts, Royal Society of Chemistry (RSC), Vol. 24, No. 8 ( 2022), p. 1152-1164
    Abstract: Per- and polyfluoroalkyl substances (PFAS) are a large class of highly fluorinated anthropogenic chemicals. Some PFAS bioaccumulate in aquatic food webs, thereby posing risks for seafood consumers. Existing models for persistent organic pollutants (POPs) perform poorly for ionizable PFAS. Here we adapt a well-established food web bioaccumulation model for neutral POPs to predict the bioaccumulation behavior of six perfluoroalkyl acids (PFAAs) and two perfluoroalkyl ether acids (HFPO-DA, 9-Cl-PF3ONS) produced as PFAA replacements. The new model includes sorption to blood plasma proteins and phospholipids, empirically parameterized membrane transport, and renal elimination for PFAAs. Improved performance relative to prior models without these updates is shown by comparing simulations to field and lab measurements. PFAS with eight or more perfluorinated carbons ( η pfc ≥ 8, i.e. , C8 perfluorosulfonic acid, C10–C11 perfluorocarboxylic acid, 9-Cl-PF3ONS) are often the most abundant in aquatic food webs. The new model reproduces their observed bioaccumulation potential within a factor of two for 〉 80% of fish species, indicating its readiness to support development of fish consumption advisories for these compounds. Results suggest bioaccumulation of η pfc ≥ 8 PFAS is primarily driven by phospholipid partitioning, and that renal elimination is negligible for these compounds. However, specific protein binding mechanisms are important for reproducing the observed tissue concentrations of many shorter-chain PFAAs, including protein transporter-mediated renal elimination. Additional data on protein-binding and membrane transport mechanisms for PFAS are needed to better understand the biological behavior of shorter-chain PFAAs and their alternatives.
    Type of Medium: Online Resource
    ISSN: 2050-7887 , 2050-7895
    Language: English
    Publisher: Royal Society of Chemistry (RSC)
    Publication Date: 2022
    detail.hit.zdb_id: 2703791-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Royal Society of Chemistry (RSC) ; 2021
    In:  Environmental Science: Processes & Impacts Vol. 23, No. 12 ( 2021), p. 1893-1905
    In: Environmental Science: Processes & Impacts, Royal Society of Chemistry (RSC), Vol. 23, No. 12 ( 2021), p. 1893-1905
    Abstract: Elevated concentrations of per- and polyfluoroalkyl substances (PFAS) in drinking-water supplies are a major concern for human health. It is therefore essential to understand factors that affect PFAS concentrations in surface water and groundwater and the transformation of perfluoroalkyl acid (PFAA) precursors that degrade into terminal compounds. Surface-water/groundwater exchange can occur along the flow path downgradient from PFAS point sources and biogeochemical conditions can change rapidly at these exchange boundaries. Here, we investigate the influence of surface-water/groundwater boundaries on PFAS transport and transformation. To do this, we conducted an extensive field-based analysis of PFAS concentrations in water and sediment from a flow-through lake fed by contaminated groundwater and its downgradient surface-water/groundwater boundary (defined as ≤100 cm below the lake bottom). PFAA precursors comprised 45 ± 4.6% of PFAS (PFAA precursors + 18 targeted PFAA) in the predominantly oxic lake impacted by a former fire-training area and historical wastewater discharges. In shallow porewater downgradient from the lake, this percentage decreased significantly to 25 ± 11%. PFAA precursor concentrations decreased by 85% between the lake and 84–100 cm below the lake bottom. PFAA concentrations increased significantly within the surface-water/groundwater boundary and in downgradient groundwater during the winter months despite lower stable concentrations in the lake water source. These results suggest that natural biogeochemical fluctuations associated with surface-water/groundwater boundaries may lead to PFAA precursor loss and seasonal variations in PFAA concentrations. Results of this work highlight the importance of dynamic biogeochemical conditions along the hydrological flow path from PFAS point sources to potentially affected drinking water supplies.
    Type of Medium: Online Resource
    ISSN: 2050-7887 , 2050-7895
    Language: English
    Publisher: Royal Society of Chemistry (RSC)
    Publication Date: 2021
    detail.hit.zdb_id: 2703791-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Royal Society of Chemistry (RSC) ; 2022
    In:  Environmental Science: Processes & Impacts Vol. 24, No. 9 ( 2022), p. 1277-1278
    In: Environmental Science: Processes & Impacts, Royal Society of Chemistry (RSC), Vol. 24, No. 9 ( 2022), p. 1277-1278
    Abstract: Guest editors Elsie Sunderland and Lenny Winkel introduce the Environmental Science: Processes & Impacts themed issue on biogeochemistry of the trace elements.
    Type of Medium: Online Resource
    ISSN: 2050-7887 , 2050-7895
    Language: English
    Publisher: Royal Society of Chemistry (RSC)
    Publication Date: 2022
    detail.hit.zdb_id: 2703791-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...