GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Biologie in unserer Zeit 29 (1999), S. 375-375 
    ISSN: 0045-205X
    Keywords: Life and Medical Sciences
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Archives of Insect Biochemistry and Physiology 17 (1991), S. 3-13 
    ISSN: 0739-4462
    Keywords: intra- and extracellular enzymes ; kinetic properties ; inhibition ; Chemistry ; Food Science, Agricultural, Medicinal and Pharmaceutical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Kc-cells from Drosophila melanogaster, grown under serum-free conditions, produce two β-hexosaminidases and secrete these enzymes into the medium. The two enzymes were separated by DEAE-exchange chromatography. According to their substrate specificities one enzyme is a β-N-acetyl-D-glucosaminidase (E.C.3.2.1.30), the other one a β-N-acetyl-D-hexosaminidase (E.C.3.2.1.52). The β-N-acetyl-D-glucosaminidase is predominant in the medium, the β-N-acetyl-D-hexosaminidase within the cells. The Km values for the substrates pNP-GlcNAc, pNP-GalNAc, and (GlcNAc)2 are 0.8, 16.73, and 1.67 mM for the β-N-acetyl-D-glucosaminidase and 0.24, 0.44, and 0.2 mM for the β-N-acetyl-D-hexosaminidase. Both enzymes are inhibited by the products and the β-N-acetyl-D-glucosaminidase is also inhibited stereospecifically by the substrates pNP-GlcNAc and (GlcNAc)2. Both enzymes are inhibited in a partial competitive way by acetamidolactones, the Kis being as low as 0.1 μM.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Archives of Insect Biochemistry and Physiology 18 (1991), S. 45-53 
    ISSN: 0739-4462
    Keywords: molecular mass ; pH and temperature optima ; thermal stability ; influence of ionic strength ; Chemistry ; Food Science, Agricultural, Medicinal and Pharmaceutical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Kc-cells from Drosophila produce two different β-D-hexosaminidases, a β-N-acetyl-D-glucosaminidase (E.C.3.2.1.30) and a β-N-acetyl-D-hexosaminidase (E.C.3.2.1.52), which are also secreted into the medium. The Mr of both enzymes is about 126,000 ± 9,700; the S-values are 8.37 ± 0.44. Both enzymes have about the same pH optima at 5.5 and the same thermal stability. The temperature optima are identical (50°C) for both enzymes if p-nitrophenyl-N-acetylglucosaminide is used as a substrate. However, when p-nitrophenyl-N-acetylgalactoseaminide is used as the substrate the β-N-acetyl-D-hexosaminidase has a temperature optimum about 10°C higher. With higher salt concentrations, the activity of the β-N-acetyl-D-glucosaminidase increases, whereas β-N-acetyl-D-hexosaminidase is inhibited. Both enzymes also differ in their sensitivity to urea, the β-N-acetyl-D-hexosaminidase being less sensitive than the β-N-acetyl-D-glucosaminidase.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Public Library of Science
    In:  PLoS ONE, 8 (9). e71528.
    Publication Date: 2017-06-22
    Description: Shrinking of body size has been proposed as one of the universal responses of organisms to global climate warming. Using phytoplankton as an experimental model system has supported the negative effect of warming on body-size, but it remains controversial whether the size reduction under increasing temperatures is a direct temperature effect or an indirect effect mediated over changes in size selective grazing or enhanced nutrient limitation which should favor smaller cell-sizes. Here we present an experiment with a factorial combination of temperature and nutrient stress which shows that most of the temperature effects on phytoplankton cell size are mediated via nutrient stress. This was found both for community mean cell size and for the cell sizes of most species analyzed. At the highest level of nutrient stress, community mean cell size decreased by 46% per degrees C, while it decreased only by 4.7% at the lowest level of nutrient stress. Individual species showed qualitatively the same trend, but shrinkage per degrees C was smaller. Overall, our results support the hypothesis that temperature effects on cell size are to a great extent mediated by nutrient limitation. This effect is expected to be exacerbated under field conditions, where higher temperatures of the surface waters reduce the vertical nutrient transport.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: We compared the development and fatty acid content of the harpacticoid copepods Tachidius discipes and Tisbe sp. fed with different microalgal species (Dunaliella tertiolecta, Rhodomonas sp., Phaeodactylum tricornutum, Isochrysis galbana and a concentrate of Pavlova sp.), which differed in cell size and fatty acid composition. Tisbe could develop in 11 days with every alga to the same average stage, whereas Tachidius developed poorly when fed with Isochrysis and Dunaliella. Feeding with Phaeodactylum resulted in a fast development of both copepods at low algal concentrations. However, reproduction was higher with Rhodomonas as food than with the other algae. Fatty acid compositions of copepods were influenced by their food source, but both were able to convert docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) from precursors. Tachidius fed with Rhodomonas or Phaeodactylum was closest to the DHA/EPA/arachidonic acid (ARA) ratio of 10 : 5 : 1 considered optimal for some marine fish larvae. Tachidius showed similar development and reproduction capacity as Tisbe, but requested higher absolute fatty acid contents in the diet. Tisbe was superior in the utilization of bacteria as additional food source and the bioconversion of precursor fatty acids. Phaeodactylum and Rhodomonas are recommendable food sources for both copepod species, but Phaeodactylum is more easily cultured.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-13
    Description: While the isolated responses of marine phytoplankton to climate warming and to ocean acidification have been studied intensively, studies on the combined effect of both aspects of Global Change are still scarce. Therefore, we performed a mesocosm experiment with a factorial combination of temperature (9 and 15°C) and pCO2 (means: 439 ppm and 1040 ppm) with a natural autumn plankton community from the western Baltic Sea. Temporal trajectories of total biomass and of the biomass of the most important higher taxa followed similar patterns in all treatments. When averaging over the entire time course, phytoplankton biomass decreased with warming and increased with CO2 under warm conditions. The contribution of the two dominant higher phytoplankton taxa (diatoms and cryptophytes) and of the 4 most important species (3 diatoms, 1 cryptophyte) did not respond to the experimental treatments. Taxonomic composition of phytoplankton showed only responses at the level of subdominant and rare species. Phytoplankton cell sizes increased with CO2 addition and decreased with warming. Both effects were stronger for larger species. Warming effects were stronger than CO2 effects and tended to counteract each other. Phytoplankton communities without calcifying species and exposed to short-term variation of CO2 seem to be rather resistant to ocean acidification.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Public Library of Science
    In:  PLoS ONE, 7 (11). e49632.
    Publication Date: 2018-01-22
    Description: Decreasing body size has been suggested as the third universal biological response to global warming after latitudinal/altitudinal range shifts and shifts in phenology. Size shifts in a community can be the composite result of intraspecific size shifts and of shifts between differently sized species. Metabolic explanations for the size shifts dominate in the literature but top down effects, i.e. intensified size-selective consumption at higher temperatures, have been proposed as alternative explanation. Therefore, we performed phytoplankton experiments with a factorial combination of warming and consumer type (protist feeding mainly on small algae vs. copepods mainly feeding on large algae). Natural phytoplankton was exposed to 3 (1st experiment) or 4 (2nd experiment) temperature levels and 3 (1st experiment: nano-, microzooplankton, copepods) or 2 (2nd experiment: microzooplankton, copepods) types of consumers. Size shifts of individual phytoplankton species and community mean size were analyzed. Both, mean cell size of most of the individual species and mean community cell size decreased with temperature under all grazing regimes. Grazing by copepods caused an additional reduction in cell size. Our results reject the hypothesis, that intensified size selective consumption at higher temperature would be the dominant explanation of decreasing body size. In this case, the size reduction would have taken place only in the copepod treatments but not in the treatments with protist grazing (nano- and microzooplankton).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-09-24
    Description: Conceptual models predict a unimodal effect of consumer abundance on prey diversity with the highest diversity at intermediate consumer abundance (intermediate disturbance hypothesis). Consumer selectivity and prey productivity are assumed to be further important determinants. Preferential grazing on dominant prey species favoured by high nutrient supply is supposed to increase prey diversity, whereas the effect of consumers on prey diversity may be negative under low nutrient conditions (grazer reversal hypothesis). We tested the effect of four common consumers the isopod Idotea baltica, the amphipod Gammarus oceanicus, and the gastropods Littorina littorea and Rissoa membranacea on diversity and composition of epiphytes growing on eelgrass Zostera marina. Consumer density was manipulated (four levels: grazer free control, low, medium, high) based on abundances observed in eelgrass systems. Additionally, we manipulated nutrient supply (three levels) and the presence of Idotea in a factorial experiment. The impact of consumer abundance on epiphyte diversity varied depending on consumer identity and epiphyte evenness was affected rather than species number in this short-term experiment. Idotea reduced epiphyte diversity (Shannon-Wiener index H') and Gammarus increased epiphyte diversity. Littorina had no effect at low and medium abundance, but a negative effect in the high density treatment. Only Rissoa supported the conceptual models as it caused the proposed unimodal pattern in epiphyte diversity. The varying species-specific selectivity of the studied consumers is likely to explain their diverse impact on epiphyte diversity. Nutrients enhanced epiphyte diversity at medium enrichment, whereas higher nutrient supply reduced epiphyte diversity. The effect of Idotea changed from negative at low nutrient concentration to positive at higher nutrient supply, supporting the grazer reversal hypothesis. This study implies that consumer species identity and nutrient concentrations are important in controlling prey diversity and composition. Different consumer selectivity and changes in selectivity with growing consumer abundance and nutrient concentration are the causal factors for this effect.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-02-01
    Description: Concerns about increasing atmospheric CO2 concentrations and global warming have initiated studies on the consequences of multiple-stressor interactions on marine organisms and ecosystems. We present a fully-crossed factorial mesocosm study and assess how warming and acidification affect the abundance, body size, and fatty acid composition of copepods as a measure of nutritional quality. The experimental set-up allowed us to determine whether the effects of warming and acidification act additively, synergistically, or antagonistically on the abundance, body size, and fatty acid content of copepods, a major group of lower level consumers in marine food webs. Copepodite (developmental stages 1–5) and nauplii abundance were antagonistically affected by warming and acidification. Higher temperature decreased copepodite and nauplii abundance, while acidification partially compensated for the temperature effect. The abundance of adult copepods was negatively affected by warming. The prosome length of copepods was significantly reduced by warming, and the interaction of warming and CO2 antagonistically affected prosome length. Fatty acid composition was also significantly affected by warming. The content of saturated fatty acids increased, and the ratios of the polyunsaturated essential fatty acids docosahexaenoic- (DHA) and arachidonic acid (ARA) to total fatty acid content increased with higher temperatures. Additionally, here was a significant additive interaction effect of both parameters on arachidonic acid. Our results indicate that in a future ocean scenario, acidification might partially counteract some observed effects of increased temperature on zooplankton, while adding to others. These may be results of a fertilizing effect on phytoplankton as a copepod food source. In summary, copepod populations will be more strongly affected by warming rather than by acidifying oceans, but ocean acidification effects can modify some temperature impacts
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-10-26
    Description: Climatic warming is a primary driver of change in ecosystems worldwide. Here, we synthesize responses of species richness and evenness from 187 experimental warming studies in a quantitative meta-analysis. We asked 1) whether effects of warming on diversity were detectable and consistent across terrestrial, freshwater and marine ecosystems, 2) if effects on diversity correlated with intensity, duration, and experimental unit size of temperature change manipulations, and 3) whether these experimental effects on diversity interacted with ecosystem types. Using multilevel mixed linear models and model averaging, we also tested the relative importance of variables that described uncontrolled environmental variation and attributes of experimental units. Overall, experimental warming reduced richness across ecosystems (mean log-response ratio = –0.091, 95% bootstrapped CI: –0.13, –0.05) representing an 8.9% decline relative to ambient temperature treatments. Richness did not change in response to warming in freshwater systems, but was more strongly negative in terrestrial (–11.8%) and marine (–10.5%) experiments. In contrast, warming impacts on evenness were neutral overall and in aquatic systems, but weakly negative on land (7.6%). Intensity and duration of experimental warming did not explain variation in diversity responses, but negative effects on richness were stronger in smaller experimental units, particularly in marine systems. Model-averaged parameter estimation confirmed these main effects while accounting for variation in latitude, ambient temperature at the sites of manipulations, venue (field versus lab), community trophic type, and whether experiments were open or closed to colonization. These analyses synthesize extensive experimental evidence showing declines in local richness with increased temperature, particularly in terrestrial and marine communities. However, the more variable effects of warming on evenness were better explained by the random effect of site identity, suggesting that effects on species’ relative abundances were contingent on local species composition.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...