GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-17
    Description: Humpback whales migrate between relatively unproductive tropical or temperate breeding grounds and productive high latitude feeding areas. However, not all individuals of a population undertake the annual migration to the breeding grounds; instead some are thought to remain on the feeding grounds year-round, presumably to avoid the energetic demands of migration. In the Southern Hemisphere, ice and inclement weather conditions restrict investigations of humpback whale presence on feeding grounds as well as the extent of their southern range. Two years of near-continuous recordings from the PerenniAL Acoustic Observatory in the Antarctic Ocean (PALAOA, Ekström Iceshelf, 70°31’S, 8°13’W) are used to explore the acoustic presence of humpback whales in an Antarctic coastal area. Humpback whale calls were present during nine and eleven months of 2008 and 2009, respectively. In 2008, calls were present in January through April, June through August, November and December, whereas in 2009, calls were present throughout the year, except in September. Calls occurred in un-patterned sequences, representing non-song sound production. Typically, calls occurred in bouts, ranging from 2 to 42 consecutive days with February, March and April having the highest daily occurrence of calls in 2008. In 2009, February, March, April and May had the highest daily occurrence of calls. Whales were estimated to be within a 100 km radius off PALAOA. Calls were also present during austral winter when ice cover within this radius was 〉90%. These results demonstrate that coastal areas near the Antarctic continent are likely of greater importance to humpback whales than previously assumed, presumably providing food resources year-round and open water in winter where animals can breathe.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PUBLIC LIBRARY SCIENCE
    In:  EPIC3PLoS ONE, PUBLIC LIBRARY SCIENCE, ISSN: 1932-6203
    Publication Date: 2017-01-25
    Description: Loud hydroacoustic sources, such as naval mid-frequency sonars or airguns for marine geophysical prospecting, have been increasingly criticized for their possible negative effects on marine mammals and were implicated in several whale stranding events. Competent authorities now regularly request the implementation of mitigation measures, including the shut-down of acoustic sources when marine mammals are sighted within a predefined exclusion zone. Commonly, ship-based marine mammal observers (MMOs) are employed to visually monitor this zone. This approach is personnel-intensive and not applicable during night time, even though most hydroacoustic activities run day and night. This study describes and evaluates an automatic, ship-based, thermographic whale detection system that continuously scans the ship’s environs for whale blows. Its performance is independent of daylight and exhibits an almost uniform, omnidirectional detection probability within a radius of 5 km. It outperforms alerted observers in terms of number of detected blows and ship-whale encounters. Our results demonstrate that thermal imaging can be used for reliable and continuous marine mammal protection.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...