GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-02-07
    Description: Marine sponges play a major ecological role in recycling resources on coral reef ecosystems. The cycling of resources may largely depend on the stability of the host-microbiome interactions and their susceptibility to altered environmental conditions. Given the current coral to algal phase shift on coral reefs, we investigated whether the sponge-associated bacterial communities of four sponge species, with either high or low microbial abundances (HMA and LMA), remain stable at two reefs sites with different coral to algae cover ratios. Additionally, we assessed the bacterial community composition of two of these sponge species before and after a reciprocal transplantation experiment between the sites. An overall stable bacterial community composition was maintained across the two sites in all sponge species, with a high degree of host-specificity. Furthermore, the core bacterial communities of the sponges remained stable also after a 21-day transplantation period, although a minor shift was observed in less abundant taxa (〈 1%). Our findings support the conclusion that host identity and HMA-LMA status are stronger traits in shaping bacterial community composition than habitat. Nevertheless, long-term microbial monitoring of sponges along with benthic biomass and water quality assessments are needed for identifying ecosystem tolerance ranges and tipping points in ongoing coral reef phase shifts.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Since the middle of the 20th century, plastics have been incorporated into our everyday lives at an exponential rate. In recent years, the negative impacts of plastics, especially as environmental pollutants, have become evident. Marine plastic debris represents a relatively new and increasingly abundant substrate for colonization by microbial organisms, although the full functional potential of these organisms is yet to be uncovered. In the present study, we investigated plastic type and incubation location as drivers of marine bacterial community structure development on plastics, i.e., the Plastisphere, via 16S rRNA amplicon analysis. Four distinct plastic types: high-density polyethylene (HDPE), linear low-density polyethylene (LDPE), polyamide (PA), polymethyl methacrylate (PMMA), and glass-slide controls were incubated for five weeks in the coastal waters of four different biogeographic locations (Cape Verde, Chile, Japan, South Africa) during July and August of 2019. The primary driver of the coastal Plastisphere composition was identified as incubation location, i.e., biogeography, while substrate type did not have a significant effect on bacterial community composition. The bacterial communities were consistently dominated by the classes Alphaproteobacteria, Gammaproteobacteria, and Bacteroidia, irrespective of sampling location or substrate type, however a core bacterial Plastisphere community was not observable at lower taxonomic levels. Overall, this study sheds light on the question of whether bacterial communities on plastic debris are shaped by the physicochemical properties of the substrate they grow on or by the marine environment in which the plastics are immersed. This study enhances the current understanding of biogeographic variability in the Plastisphere by including biofilms from plastics incubated in the previously uncharted Southern Hemisphere.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...