GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ovid Technologies (Wolters Kluwer Health)  (2)
  • 1
    In: Circulation: Genomic and Precision Medicine, Ovid Technologies (Wolters Kluwer Health), Vol. 16, No. 3 ( 2023-06), p. 248-257
    Abstract: Genome-wide association studies have identified hundreds of loci associated with lipid levels. However, the genetic mechanisms underlying most of these loci are not well-understood. Recent work indicates that changes in the abundance of alternatively spliced transcripts contribute to complex trait variation. Consequently, identifying genetic loci that associate with alternative splicing in disease-relevant cell types and determining the degree to which these loci are informative for lipid biology is of broad interest. Methods: We analyze gene splicing in 83 sample-matched induced pluripotent stem cell (iPSC) and hepatocyte-like cell lines (n=166), as well as in an independent collection of primary liver tissues (n=96) to perform discovery of splicing quantitative trait loci (sQTLs). Results: We observe that transcript splicing is highly cell type specific, and the genes that are differentially spliced between iPSCs and hepatocyte-like cells are enriched for metabolism pathway annotations. We identify 1384 hepatocyte-like cell sQTLs and 1455 iPSC sQTLs at a false discovery rate of 〈 5% and find that sQTLs are often shared across cell types. To evaluate the contribution of sQTLs to variation in lipid levels, we conduct colocalization analysis using lipid genome-wide association data. We identify 19 lipid-associated loci that colocalize either with an hepatocyte-like cell expression quantitative trait locus or sQTL. Only 2 loci colocalize with both a sQTL and expression quantitative trait locus, indicating that sQTLs contribute information about genome-wide association studies loci that cannot be obtained by analysis of steady-state gene expression alone. Conclusions: These results provide an important foundation for future efforts that use iPSC and iPSC-derived cells to evaluate genetic mechanisms influencing both cardiovascular disease risk and complex traits in general.
    Type of Medium: Online Resource
    ISSN: 2574-8300
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2023
    detail.hit.zdb_id: 2927603-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Arteriosclerosis, Thrombosis, and Vascular Biology, Ovid Technologies (Wolters Kluwer Health), Vol. 37, No. suppl_1 ( 2017-05)
    Abstract: The most recent Genome-wide Association Study (GWAS) meta-analysis has reported a total of 58 genomic loci to be statistically significantly associated with genetic susceptibility to Coronary Artery Disease (CAD) (Consortium, 2015). Many of these loci also associate with other phenotypes, with the majority being lipid traits (Tada et al., 2014). But also hypertension, stroke (Dichgans et al., 2014) and migraine (Pickrell et al., 2016) appear to share genetic determinants with CAD. To functionally annotate the genomic loci harboring these association SNPs we sequenced the transcriptomes of 20 same donor human coronary artery endothelial (EC) and smooth muscle cell (SMC) lines. Deep RNA-Sequencing was used to assess Differential Gene Expression, Differential Splicing and Allele-Specific Expression. Focusing on GWAS loci for vascular phenotypes (CAD, stroke, migraine) we identified genes which display allele-specific differences in mRNA expression or splicing. We propose these genes as suitable targets for follow up studies. Consortium, C.A.D. (2015). A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nature genetics 47, 1121-1130. Tada, H., Won, H.H., Melander, O., Yang, J., Peloso, G.M., and Kathiresan, S. (2014). Multiple associated variants increase the heritability explained for plasma lipids and coronary artery disease. Circulation Cardiovascular genetics 7, 583-587. Dichgans, M., Malik, R., Konig, I.R., Rosand, J., Clarke, R., Gretarsdottir, S., Thorleifsson, G., Mitchell, B.D., Assimes, T.L., Levi, C., et al. (2014). Shared genetic susceptibility to ischemic stroke and coronary artery disease: a genome-wide analysis of common variants. Stroke; a journal of cerebral circulation 45, 24-36. Pickrell, J.K., Berisa, T., Liu, J.Z., Segurel, L., Tung, J.Y., and Hinds, D.A. (2016). Detection and interpretation of shared genetic influences on 42 human traits. Nature genetics 48, 709-717.
    Type of Medium: Online Resource
    ISSN: 1079-5642 , 1524-4636
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2017
    detail.hit.zdb_id: 1494427-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...