GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Imidazoles. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (470 pages)
    Edition: 1st ed.
    ISBN: 9780470188040
    Series Statement: Chemistry of Heterocyclic Compounds: a Series of Monographs ; v.12
    DDC: 547.8
    Language: English
    Note: Intro -- IMIDAZOLE and Its Derivatives -- Contents -- Preface -- Section 1 CHEMISTRY OF CLASSES AND DERIVATIVES -- I. General Properties and Structure of the Imidazoles -- A. Nomenclature -- B. Physical Properties -- 1. Introduction -- 2. Boiling and Melting Points -- 3. Solubility -- 4. Molecular Weight and Degree of Association -- 5. Viscosity -- 6. Dipole Moments -- 7. Spectroscopic Properties -- (a) Ultraviolet Absorption Spectra -- (b) Raman Spectra -- (c) Chemiluminescence -- 8. Miscellaneous Physical Properties -- C. Chemical Properties -- 1. Basic Strength -- 2. Pseudoacidic Character -- 3. Chemical Stability and Aromatic Character -- D. Structural Considerations -- 1. The Classical Imidazole Formula -- 2. Current Views -- E. Tautomeric Character -- II. The Alkyl- and Arylimidazoles -- A. Synthetic Procedures -- 1. Introduction -- 2. The Radziszewski Synthesis -- 3. The Weidenhagen Synthesis -- 4. Formation from Carbohydrates -- 5. Formation from 2(3H)-Imidazolethiones and Dithiohydantoins -- 6. Formation from Imidazolecarboxylic Acids -- 7. Formation from 2-Imidazolines -- 8. Miscellaneous Procedures -- B. Properties and Chemical Behavior -- 1. General Properties -- 2. Acylation -- 3. Alkylation -- III. The Oxo- and Hydroxyimidazoles and Their Sulfur Analogues -- A. The Oxoimidazoles -- 1. Imidazolecarboxaldehydes -- 2. Imidazole Ketones -- 3. Imidazolones and Thiones -- (a) Nomenclature -- (b) Structural Considerations Regarding the 2(3H)-Imidazolones and Thiones -- (c) 2(3H)-Imidazolones -- (d) 2(3H)-Imidazolethiones -- (e) 2(5H)-Imidazolones -- (f) 4(5H) (or 5(4H))-Imidazolones -- B. The Hydroxyalkylimidazoles -- 1. Monohydroxyalkylimidazoles -- (a) Hydroxymethylimidazoles -- (b) 4(or 5)-(2-Hydroxyethyl)Imidazole -- 2. Polyhydroxyalkylimidazoles -- (a) 4(or 5)-Polyhydroxyalkylimidazoles -- (b)) l-Polyhydroxyalkylimidazoles. , IV. The Halogenoimidazoles -- A. Bromoimidazoles -- 1. Preparative Methods -- 2. Properties -- B. Chloroimidazoles -- C. Chloroalkylimidazoles -- D. Iodoimidazoles -- 1. Preparative Methods -- 2. Properties -- V. The Nitro-, Arylazo-, and Aminoimidazoles -- A. Nitroimidazoles -- 1. Synthetic Methods and Orientation of the Nitro Group -- 2. Properties -- B. Arylazoimidazoles -- 1. Formation and Orientation of the Arylazo Group -- 2. Application of the Diazo Test to the Identification and Estimation of Imidazoles -- 3. Properties -- C. Aminoimidazoles -- 1. 2-Aminoimidazoles -- 2. 4(or 5)-Aminoimidazoles -- D. Histamine -- 1. Discovery, Distribution in Nature, and Pharmacological Effects -- 2. Isolation from Natural Materials -- 3. Quantitative Estimation of Histamine -- (a) Biological Methods -- (b) Colorimetric Methods -- 4. Formation by Microorganisms -- 5. Preparative Methods -- 6. Physical and Chemical Properties -- 7. Structural Analogues of Histamine -- (a) Position Isomers -- (b) Ring-Substitution Products -- (c) N-Monoalkyl- and N-Dialkylhistamine Derivatives -- (d) Histamine Analogues Possessing Longer or Shorter Aliphatic Side Chains -- 8. Pharmacological Specificity -- VI. The Imidazolecarboxylic and Sulfonic Acids -- A. Imidazolecarboxylic Acids -- 1. l-Imidazolecarboxylic Acids -- 2. 2-Imidazolecarboxylic Acids -- 3. 4(or 5)-Imidazolecarboxylic Acids -- 4. 4,5-Imidazoledicarboxylic Acids -- 5. 4(or 5)-Amino-5(or 4)-Imidazolecarboxylic Acids -- (a) Occurrence and Methods of Preparation -- (b) Conversion into Purines -- 6. Histidine -- (a) Discovery, Distribution in Nature, and Structure -- (b) Nomenclature -- (c) Isolation -- (d) Quantitative Estimation -- (e) Synthesis and Resolution -- (f) Physical and Chemical Properties -- (g) Structural Analogues -- B. Imidazolesulfonic Acids -- 1. Structural Considerations. , 2. 1-Imidazolesulfonic Acids -- 3. 2-Imidazolesulfonic Acids -- 4. 4(or 5)-Imidazolesulfonic Acids -- VII. The Imidazolines, 2-Imidazolidones, 2-Imidazolidinethiones, 2-Iminoimidazolidines, and Imidazolidines -- A. Nomenclature -- B. 2-Imidazolines -- 1. Synthetic Methods -- 2. General Properties and Structural Considerations -- 3. Acylation -- 4. Alkylation -- 5. Practical Applications and Pharmacological Action -- C. 2-Imidazolidones -- 1. Synthetic Methods and Properties -- 2. Desthiobiotin and Its Analogues -- D. 2-Imidazolidinethiones -- E. 2-Iminoimidazolidines -- F. Imidazolines -- VIII. The Benzimidazoles -- A. Nomenclature -- B. General Properties -- 1. Boiling Points, Melting Points, and Degree of Association -- 2. Pseudoacidic Character -- 3. Basic Strength and Electronic Structure -- 4. Ultraviolet Absorption Spectra -- 5. Chemical Properties -- 6. Tautomeric Character -- C. Synthetic Procedures -- 1. Introduction -- 2. Formation from Acylated o-Nitroarylamines -- 3. Formation from o-Phenylenediamines and Carboxylic Acids, Acid Anhydrides, Esters, or Amides -- 4. Formation from o-Phenylenediamines and Nitriles -- 5. Formation from o-Phenylenediamines and Imino Ethers or Imino Thioethers -- 6. Formation from o-Phenylenediamines and Aldehydes or Ketones -- 7. Miscellaneous Procedures -- D. The 1-Acylbenzimidazoles and the Bamberger Reaction -- E. The Alkyl- and Arylbenzimidazoles and 1,3-Dialkylbenzimidazolium Salts -- F. The Oxo- and Hydroxybenzimidazoles and Their Sulfur Analogues -- 1. "Oxanhydro Bases" or "Oxbenzimidazoles -- 2. 2(3H)-Benzimidazolones -- 3. 2(3H)-Benzimidazolethiones -- 4. Hydroxyalkylbenzimidazoles -- (a) 1-(PoIyhydroxyalkyl) benzimidazoles (1-Glycosylbenzimidazoles) -- (b) 2-(Monohydroxyalkyl) benzimidazoles -- (c) 2-(Aldopolyhydroxyalkyl) benzimidazoles -- (d) Aldarodibenzimidazoles -- G. The Halogenobenzimidazoles. , 1. Bz-Halogenobenzimidazoles -- 2. 2-Chlorobenzimidazoles -- 3. 2-ChloroalkylbenzimidazoIes -- H. The Nitro- and Aminobenzimidazoles -- 1. Nitrobenzimidazoles -- 2. Aminobenzimidazoles -- (a) Bz-Aminobenzimidazoles -- (b) 2-Aminobenzimidazoles -- (c) Aminoalkyl- and Aminoarylbenzimidazoles -- I. The Benzimidazolecarboxylic and Sulfonic Acids -- 1. Carboxylic Acids -- 2. Sulfonic Acids -- Section 2. SYSTEMATIC SURVEY AND BIBLIOGRAPHY -- Key to Abbreviations -- I. Imidazoles -- A. Alkyl- and Arylimidazoles -- B. Alkyl- and Arylimidazolium Salts -- C. Oxo- and Hydroxyimidazoles and Their Sulfur Analogues -- 1. 2(3H)-Imidazolones -- (a) Alkyl- and Aryl-2(3H)-imidazolones -- (b) Oxo-, Hydroxyalkyl-, and Hydroxyaryl-2(3H)-imidazolones -- (c) Halogenoalkyl-, Aminoalkyl-, and Sulfoalkyl-2(3H)-imidazolones -- (d) 2(3H)-Imidazolonecarboxylic Acids -- (e) Carboxyalkyl- and Carboxyaryl-2(3H)-imidazolones -- (f) Carboxy- and Carboxyalkyl-2(3H)-imidazolones Containing Additional Functional Groups -- 2. 5(4H)-Imidazolones -- 3. 4(5H) (or 5(4H))-Imidazolones -- 4. 2(3H)-Imidazolethiones (2-Mercaptoimidazoles -- (a) Alkyl- and Aryl-2(3H)-imidazolethiones -- (b) 2(3H)-Imidazolethiones Containing Additional Functional Groups -- (c) 2(3H)-ImidazoIethionecarboxylic Acids and Carboxyalkyl- 2(3H)-imidazolethiones -- 5. 4(5H) (or 5(4H))-Imidazolethiones -- 6. Mono- and Polyhydroxyalkyl- and Hydroxyarylimidazoles, Their Ethers and Halogeno Derivatives -- 7. Mercaptoalkyl- and Mercaptoarylimidazoles -- 8. Imidazolecarboxaldehydes and Ketones -- D. Halogenoimidazoles -- 1. Halogeno-, Halogenoalkyl-, and Halogenoarylimidazoles -- 2. Halogenated Alkyl- and Arylimidazolium Salts -- E. Nitroimidazoles -- 1. Nitro- and Nitroarylimidazoles -- 2. Nitroalkyl- and Nitroarylimidazoles Containing Additional Functional Groups -- 3. Nitroalkyl- and Nitroarylimidazolium Salts. , F. Arylazoimidazoles -- G. Aminoimidazoles -- 1. Amino-, Aminoalkyl-, and Aminoarylimidazoles -- 2. Amino-, Aminoalkyl-, and Aminoarylimidazoles Containing Additional Functional Groups -- H. Cyano- and Isocyanatoimidazoles -- I. Imidazolecarboxylic Acids -- 1. Monocarboxylic Acids -- (a) Alkyl- and Arylimidazolecarboxylic Acids -- (b) Imidazolecarboxylic Acids Containing Additional Functional Groups -- (c) Carboxyalkyl- and Carboxyarylimidazoles Including Those Containing Additional Functional Groups -- (1) D-Histidine -- (2) L-Histidine -- (3) DL-Histidine -- (4) Histidine Peptides -- 2. Dicarboxylic Acids -- (a) Alkyl- and Arylimidazoledicarboxylic Acids -- (b) Imidazoledicarboxylic Acids Containing Additional Functional Groups -- (c) Carboxyalkylimidazoleocarboxylic Acids Including Those Containing Additional Functional Groups -- J. Imidazolesulfinic and Sulfonic Acids -- K. Imidazole Arsenicals -- L . Isoimidazoles -- M. Heteroring-Substituted Imidazoles -- 1. Furan Derivatives -- 2. Thiophene Derivatives -- 3. Thiazole Derivatives -- 4. Pyridine Derivatives -- 5. Piperidine Derivatives -- 6. Morpholine Derivatives -- 7. Pyrimidine Derivatives -- 8. Quinoline Derivatives -- 9. Acridine Derivatives -- N. Bi- and Bisimidazoles -- II. Imidazolines -- A. 2-Imilazolines -- 1. Alkyl- and Aryl-2-imidazolines -- 2. Alkyl- and Arylimidazolinium Salts -- 3. Alkyl- and Aryl-2-imidazolines Containing Additional Functional Groups -- 4. 2-Imidazolinecarboxylic and Sulfonic Acids -- B. 3-Imidazolines -- C. 4-Imidazolines -- D. Heteroring-Substituted 2-Imidazolines -- 1. Furan Derivatives -- 2. Thiophene Derivatives -- 3. Triazole Derivatives -- 4. Pyridine Derivatives -- 5. Piperidine Derivative -- 6. Thianaphthene Derivatives -- E. Bi- and Di-2-imidazolines -- III. Imidazolidines -- A. Alkyl- and Arylimidazolidines. , B. Alkyl- and Arylimidazolidines Containing Additional Functional Groups.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 95 (1987), S. 271-281 
    ISSN: 1432-1424
    Keywords: rod outer segment ; rhodopsin ; time-resolved light scattering ; G-protein
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Formation of the complex between photoreceptor G-protein (G) and photoactivated rhodopsin (R M ) leads to a change in the light scattering of the disk membranes (binding signal or signalP). The signal measured on isolated disks (so-calledP D signal) is exactly stoichiometric in its final level to bound G-protein but its kinetics are much slower than theR M G binding reaction. In this study on isolated disks, recombined with G-protein, we analyzed theP D -signal level and kinetics as a function of flash intensity and compared it to theR M G-complex formation monitored spectroscopically (by extra metarhodopsin II). The basic observation is that the initial slopes of theP D signals decrease with flash intensity when the signals are normalized to the same final level. This finding prevents an explanation of the scattering signal by a slow postponed reaction of theR M G complex. We propose to interpret the scattering change as a redistribution of G-protein between a membrane-bound and a solved state. The process is driven by the complexation of membrane-bound G to flash-activated rhodopsin (R M ). The experimental evidence for this two-state model is the following: (1) The intensity dependence of the initial rate of theP D signal is explained by the model. Under the assumption of a bimolecular reaction of free G with sites at the membrane, equal to rhodopsin in their concentration, the measured rates yield aK D of 10−5 M. (2) Evaluation of the extra MII kinetics yields a biphasic rise at saturating flashes. The measured rates fit to the supply of free and membrane-bound G-protein for the reaction withR M . (3) Quantitative estimation of the expected scattering intensity changes gives a comprehensive description of binding signal and dissociation signal by the gain and loss of G-protein scattering mass. (4) The temperature dependence of theP D -signal rate leads to an activation energy of the membrane-association process ofE a =44 kJ/mol.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary A cloning vector system was constructed on the basis of the pBR322 derivative pEG1 by introducing the whole parB locus of plasmid R1 cloned behind the promoter of the alkaline phosphatase gene (phoA) of Escherichia coli. The parB locus in combination with the phoA promoter ensures both (i) plasmid stabilization due to the post-segregational killing of plasmid-free cells during growth and (ii) killing of the cells induced by the potential environmental signal phosphate limitation. This vector, therefore, appears to be a model system for increasing the stability of recombinant plasmids and for decreasing the potential risks in the application of recombinant bacteria in industrial fermentations.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1017
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1017
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    European food research and technology 129 (1966), S. 143-149 
    ISSN: 1438-2385
    Source: Springer Online Journal Archives 1860-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: Zusammenfassung Wie eine Diskussion der in der Literatur angegebenen Verfahren zur Ermittlung von Sulfhydrylgruppen in Proteinen ergibt, kommen für die Bestimmungen von Sulfhydrylgruppen in Muskelgewebe, Myofibrillen und nicht gelösten Muskelproteinen in erster Linie die Reaktionen mit Silbernitrat, N-Äthylmaleinimid und p-Chlormercuribenzoat in Betracht.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    European food research and technology 159 (1975), S. 205-212 
    ISSN: 1438-2385
    Source: Springer Online Journal Archives 1860-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Description / Table of Contents: Zusammenfassung Obwohl die amperometrische Titration mit AgNO3 zu den am häufigsten angewendeten Methoden zur Bestimmung von SH-Gruppen in Proteinen gehört, wird die Spezifität von Ag+-Ionen für Protein-SH-Gruppen in der Literatur vielfach angezweifelt. Dabei geht man von der Tatsache aus, daß Cystein bei der Titration infolge Komplexbildung einen zu hohen AgNO3-Verbrauch verursacht. Um zu prüfen, ob ein unspezifischer Mehrverbrauch auch bei Proteinen eintritt, wurden in der vorliegenden Arbeit ausgewählte Proteine, die (a) nur SH-Gruppen, (b) sowohl SH- wie SS-Gruppen, (c) nur SS-Gruppen und (d) weder SH- noch SS-Gruppen enthielten, mit 0,001 m-AgNO3-Lösung in Trispuffer pH 7,4 amperometrisch titriert. Eingesetzt wurden: Hämoglobin, Serumalbumin, Eialbumin, Lysozym, Pepsin, Myoglobin und Cytochrom c. Die direkte sowie die indirekte Titration der (a) nativen, (b) denaturierten und (c) mit NaBH4 reduzierten Proteine ergab, daß der theoretisch zu erwartende Verbrauch an Ag+-Ionen in keinem der untersuchten Fälle überschritten wurde. AgNO3 ist somit unter den gewählten Bedingungen durchaus als spezifisches Reagens für Protein-SH-Gruppen anzusehen. In der Literatur gelegentlich mitgeteilte zu hohe SH-Werte, die man durch amperometrische Titration von Proteinen mit AgNO3 erhielt, beruhen z. T. auf einer unzutreffenden Ermittlung des Titrationsendpunktes. Die Reduzierbarkeit der SS-Gruppen hängt von der Art des Proteins ab. Lysozym und Pepsin wurden bereits bei 23° C, Rinderserumalbumin erst bei 60° C vollständig reduziert. Die direkte Titration war nur in einigen Fällen geeignet, alle ursprünglich vorhandenen bzw. durch Reduktion mit NaBH4 gebildeten SH-Gruppen zu erfassen. Die indirekte Methode lieferte dagegen maximale Werte, da hierbei auch langsam reagierende Protein-SH-Gruppen erfaßt und gut auswertbare Titrationskurven erhalten wurden.
    Notes: Summary The specifity of Ag+ ions for protein SH groups has been questioned frequently, even though the amperometric titration with AgNO3 is one of the most common methods for the determination of SH groups in proteins. This is due to the fact, that the formation of silver complexes in the titration of cysteine causes a consumption of AgNO3 which is too high. In order to find out if this may be true in the case of proteins, in the present work selected proteins with a well known content of SH and SS groups have been titrated amperometrically in tris buffer pH 7.4 with 0.001M AgNO3. The proteins used were hemoglobin, bovine serum albumin, ovalbumin, lysozyme, pepsin, myoglobin, and cytochrome c. The direct and the indirect titrations of (a) native, (b) denatured, and (c) NaBH4 reduced proteins showed, that the expected consumption of AgNO3 was in no case exceeded. Therefore under the conditions used AgNO3 may be considered as a specific reagent for protein SH groups. High SH values as a result of the amperometric titration of proteins with silver nitrate, which have been published occasionally, may be due to incorrect estimation of the end point of the titration. The reducibility of SS groups depends on the kind of protein. Lysozyme and pepsin were already completely reduced at 23° C, whereas bovine serum albumin needed 60° C. The direct titration method was useful only in some cases for the detection of all SH groups originally present in the proteins or formed by reduction with NaBH4. On the other hand the indirect titration method gave maximum values, because the slowly reacting SH groups of proteins are also allowed to react and the resulting titration curves may be evaluated correctly.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    European food research and technology 156 (1974), S. 139-144 
    ISSN: 1438-2385
    Source: Springer Online Journal Archives 1860-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Description / Table of Contents: Zusammenfassung Verschiedene, für die Bestimmung von Protein-SH-Gruppen ausgearbeitete Titrationsverfahren („direkte”, „umgekehrte”, „indirekte” und „doppelt-indirekte” oder „Äquivalenz”-Titration) werden hinsichtlich ihrer Mängel und Vorzüge besprochen. Für ungelöste Proteine und solche mit langsam reagierenden SH-Gruppen sind nur die indirekten Methoden empfehlenswert.
    Notes: Summary The methods, developed for the titration of the SH groups in proteins (direct, reserved, indirect and double-indirect or „equivalence” titration) are discussed considering their advantages or disadvantages. Especially proteins, not soluble in water, and such proteins with slowly reacting SH groups should be titrated by the indirect methods.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    European food research and technology 130 (1966), S. 85-92 
    ISSN: 1438-2385
    Source: Springer Online Journal Archives 1860-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: Zusammenfassung Zur Bestimmung von SH-Gruppen in Muskelgewebe oder Myofibrillen läßt man Proben, die etwa 100 mg Protein enthalten, in Phosphatpuffer von pH 6,0 2 Std unter ständigem Schütteln mit überschüssigem NEM bei 25°C reagieren. Nach dem Abzentrifugieren fällt man die gelösten Proteine mit TCA aus und ermittelt die nicht verbrauchte Menge an NEM spektralphotometrisch bei 300 nm. Mit dieser Methode werden nur die leicht zugänglichen SH-Gruppen der Muskelproteine erfaßt. Das Verfahren eignet sich vor allem für Untersuchungen, bei denen Proteinveränderungen verfolgt werden sollen, die mit einer Änderung der Zugänglichkeit von SH-Gruppen verbunden sind.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    European food research and technology 136 (1967), S. 7-10 
    ISSN: 1438-2385
    Source: Springer Online Journal Archives 1860-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: Zusammenfassung Eine Methode zur Bestimmung von Sulfhydrylgruppen in Myofibrillen mit Natrium-p-chlorquecksilber(II)benzoat in Phosphatpuffer pH 7,0 wird beschrieben Das Reagens erfaßt hierbei nur einen Teil der SH-Gruppen (die sog. leichtzugänglichen). Das Ausmaß der Reaktion in Abhängigkeit von der Reagenskonzentration und der Reaktionszeit wurde untersucht.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...