GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Irrigation--Management. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (680 pages)
    Edition: 1st ed.
    ISBN: 9780128118566
    DDC: 333.913
    Language: English
    Note: Front Cover -- Planning and Evaluation of Irrigation Projects -- Dedication -- Planning and Evaluationof Irrigation Projects Methods and Implementation -- Copyright -- Contents -- Preface -- Acknowledgments -- 1 - INTRODUCTION -- 1.1 IRRIGATION: DEFINITION, FUNCTIONS, ADVANTAGES, AND DISADVANTAGES -- 1.2 IRRIGATION PLANNING -- 1.3 NEED OF EVALUATION: BENCHMARKING AND WATER AUDITING -- 1.4 ORGANIZATION OF THIS BOOK -- 2 - IRRIGATION PROJECT PLANNING -- 2.1 PLANNING STAGES -- 2.1.1 PROJECT IDENTIFICATION -- 2.1.2 PROJECT PREPARATION AND ANALYSIS -- 2.1.3 PROJECT APPRAISAL -- 2.1.4 PROJECT IMPLEMENTATION -- 2.1.5 MONITORING AND EVALUATION -- 2.2 INVESTIGATION PHASES AND DATA COLLECTION -- 2.2.1 DATA COLLECTION -- 2.3 SCOPE OF WORK FOR PLANNING OR PREFEASIBILITY REPORT STAGE -- 2.4 SCOPE OF WORK FOR DETAILED INVESTIGATION OR DETAILED PROJECT REPORT STAGE -- 2.4.1 ACTIVITIES FOR THE PREPARATION OF DETAILED PROJECT REPORT -- 2.4.2 DELIVERABLES AND IMPLEMENTATION PLAN TO BE INCORPORATED IN DETAILED PROJECT REPORT -- 2.5 FACTORS AFFECTING THE DEVELOPMENT OF IRRIGATION FACILITIES -- 2.5.1 SOIL -- 2.5.2 CLIMATE -- 2.5.3 TOPOGRAPHY -- 2.5.4 WATER SOURCE -- 2.5.5 WATER QUANTITY -- 2.5.6 WATER QUALITY -- 2.5.7 CROP(S) TO BE CULTIVATED -- 2.5.8 ENERGY -- 2.5.9 LABOR -- 2.5.10 CAPITAL -- 2.5.11 ECONOMIC FACTOR -- 2.5.12 ENVIRONMENTAL ASPECTS -- 2.5.13 NATIONAL POLICY AND PRIORITY -- 2.5.14 SOCIOCULTURAL ASPECTS -- 2.5.15 INSTITUTIONAL INFRASTRUCTURE -- REFERENCES -- 3 - BASIC HYDRAULIC COMPUTATIONS -- 3.1 BASIC TERMINOLOGY -- 3.1.1 CLASSIFICATION OF OPEN CHANNEL FLOW -- 3.2 CONSERVATION LAWS -- 3.2.1 LAW OF MASS CONSERVATION OR CONTINUITY EQUATION -- 3.2.2 LAW OF MOMENTUM CONSERVATION -- 3.2.2.1 Specific Force -- 3.2.3 LAW OF ENERGY CONSERVATION -- 3.2.3.1 Steady-State Flow Equation -- 3.2.3.2 Specific Energy Equation -- 3.2.3.3 Application of Specific Energy. , 3.2.3.3.1 Channel Transition -- 3.3 HYDRAULIC JUMP -- 3.3.1 ELEMENTS OF HYDRAULIC JUMP -- 3.3.1.1 Chaurasia (2003) -- 3.3.1.2 Swamee and Rathie (2004) -- 3.4 COMPUTATION OF CRITICAL DEPTH -- 3.5 UNIFORM FLOW COMPUTATION -- 3.5.1 COMPUTATION OF NORMAL DEPTH -- 3.5.1.1 Explicit Method of Computing the Normal Depth -- 3.6 GRADUALLY VARIED FLOW -- 3.6.1 CLASSIFICATION OF GRADUALLY VARIED FLOW -- 3.6.2 COMPUTATION OF GRADUALLY VARIED FLOW OR WATER LEVEL PROFILE -- 3.6.2.1 Direct Integration Method -- 3.6.2.2 Direct Step Method -- 3.6.2.3 Standard Step Method -- 3.6.2.4 Predictor-Corrector Method -- 3.7 CONCLUDING REMARKS -- REFERENCES -- FURTHER READING -- 4 - HYDROLOGIC COMPUTATIONS -- 4.1 ANALYSES OF RAINFALL DATA -- 4.1.1 OPTIMUM NUMBER OF RAIN GAUGES -- 4.1.1.1 Coefficient of Variation Technique -- 4.1.2 ESTIMATION OF AVERAGE RAINFALL -- 4.1.3 ESTIMATION OF RAINFALL TRENDS FOR CLIMATIC VARIATION: THE MANN-KENDALL TEST -- 4.2 HYDROLOGIC CYCLE -- 4.2.1 COMPONENTS OF HYDROLOGIC CYCLE AND IMPORTANT TERMINOLOGY -- 4.3 HYDROLOGIC EQUATION AND WATER BALANCE -- 4.3.1 PERIOD OF WATER-BALANCE EXERCISE -- 4.3.2 PURPOSE OF WATER BALANCE -- 4.4 ESTIMATION OF RESERVOIR INFLOW USING OBSERVED DATA -- 4.4.1 DETERMINATION OF CATCHMENT OR RESERVOIR YIELD -- 4.5 ESTIMATE OF CATCHMENT YIELD USING RAINFALL-RUNOFF MODELING -- 4.5.1 STRANGE TABLE -- 4.5.2 SIMPLE WATER-BALANCE MODEL -- 4.5.2.1 Components of SWMB -- 4.5.2.1.1 Upper Layer Water Balance -- 4.5.2.1.2 Lower Layer Water Balance -- 4.5.2.1.3 Subsurface Runoff -- 4.5.2.1.4 Surface Runoff -- 4.5.2.2 Runoff Routing -- 4.5.3 MODIFIED SCS-CN MODEL -- 4.5.3.1 Rainfall-Excess Computation -- 4.5.3.2 Soil Moisture Budgeting -- 4.5.3.3 Computation of Evapotranspiration -- 4.5.3.4 Catchment Routing -- 4.5.3.5 Baseflow Computation -- 4.6 INFLOW ESTIMATION IN MULTI-RESERVOIR CASE. , 4.6.1 RESERVOIR ROUTING: STORAGE-INDICATION METHOD -- 4.6.2 CHANNEL ROUTING -- 4.6.2.1 The Muskingum Method -- 4.6.2.1.1 Parameter Estimation of the Muskingum Method -- 4.6.2.2 The Muskingum-Cunge Method -- 4.6.2.3 Modified Muskingum-Cunge Method (Ponce and Yevjevich, 1978) -- 4.7 DESIGN-FLOOD ESTIMATION FOR FIXING THE SPILLWAY CAPACITY -- 4.7.1 UNIT HYDROGRAPH METHOD -- 4.7.1.1 Assumptions of the Unit Hydrograph -- 4.7.1.2 Derivation of Unit Hydrograph -- 4.7.1.3 Unit Duration of UH -- 4.7.1.4 Limitations of Unit Hydrograph -- 4.7.1.5 Computation of Floods From UH Using Convolution -- 4.7.1.6 Changing the Duration of UH -- 4.7.1.6.1 Principle of Superposition -- 4.7.1.6.2 S-Hydrograph Method -- 4.7.2 SYNTHETIC HYDROGRAPH METHOD -- 4.7.2.1 Snyder's Method -- 4.7.2.2 SCS Synthetic UH Method -- 4.7.2.3 Synthetic Unit Hydrograph Method of CWC -- 4.7.3 CONCEPTUAL MODELS -- 4.7.3.1 The Clark-Based IUH Model -- 4.7.3.1.1 Parameters of the Clark Model -- 4.7.3.1.1.1 Time of Concentration, tc -- 4.7.3.1.1.2 Time-Area (TA) Diagram -- 4.7.3.1.1.2.1 TA Diagram Using the DEM -- 4.7.3.1.1.2.2 Synthetic TA and TAC Curve -- 4.7.3.1.1.3 Storage Coefficient, K -- 4.7.3.1.2 Governing Equation of the Clark Model -- 4.7.3.1.2.1 Derivation of Routing Equation -- 4.7.4 DESIGN-FLOOD ESTIMATION USING FLOOD-FREQUENCY ANALYSIS -- 4.7.4.1 Components of Frequency Analysis -- 4.8 RESERVOIR SIZING -- 4.8.1 STORAGE ZONES IN A RESERVOIR -- 4.8.2 AREA-ELEVATION AND CAPACITY-ELEVATION CURVES -- 4.8.3 DETERMINATION OF RESERVOIR CAPACITY -- 4.8.3.1 Flow-Mass Curve Analysis -- 4.8.3.2 Sequent Peak Algorithm -- 4.8.3.2.1 Graphical Procedure -- 4.8.3.2.2 Analytical Procedure -- 4.8.4 RESERVOIR OPERATION -- 4.8.4.1 Standard Operating Policy -- 4.8.5 RESERVOIR RULE CURVE -- 4.9 RESERVOIR SEDIMENTATION -- 4.9.1 DIRECT MEASUREMENT OF SEDIMENT YIELD AND EXTENSION OF MEASURED DATA. , 4.9.1.1 Extension of Sediment Data -- 4.9.1.2 Estimating Sediment Yield -- 4.9.2 TRAP EFFICIENCY OF RESERVOIR -- 4.9.2.1 Brune (1953) Method -- 4.9.2.2 USDA-SCS (1983) Method -- 4.9.2.3 Churchill (1948) Method -- 4.9.3 SEDIMENT DISTRIBUTION IN RESERVOIR -- 4.9.3.1 Empirical Methods for Evaluating Sediment Distribution -- 4.9.3.1.1 Area-Increment Method -- 4.9.3.1.2 Empirical Area-Reduction Method -- 4.10 CONCLUDING REMARKS -- REFERENCES -- FURTHER READING -- 5 - ESTIMATION OF LAKE EVAPORATION AND POTENTIAL EVAPOTRANSPIRATION -- 5.1 ESTIMATION OF LAKE EVAPORATION -- 5.2 ESTIMATION OF REFERENCE CROP EVAPOTRANSPIRATION -- 5.2.1 FAO-56 AND ASCE-EWRI METHOD -- 5.2.2 HARGREAVES METHOD -- 5.3 CONCLUDING REMARKS -- REFERENCES -- 6 - ESTIMATING IRRIGATION DESIGN PARAMETERS -- 6.1 ESTIMATION OF CROP WATER REQUIREMENT -- 6.1.1 CROP GROWTH STAGE -- 6.1.2 CROP COEFFICIENTS -- 6.1.3 PRINCIPAL CROPS AND THEIR WATER REQUIREMENT AND CRITICAL STAGES -- 6.2 IRRIGATION WATER REQUIREMENT -- 6.2.1 WATER REQUIRED FOR LAND SOAKING, WRLS -- 6.2.2 WATER REQUIRED FOR LAND PREPARATION, WRLP -- 6.2.3 WATER REQUIRED FOR LEACHING, WRL -- 6.2.4 GROSS IRRIGATION WATER REQUIREMENT, GIWR -- 6.3 IRRIGATION EFFICIENCY -- 6.3.1 WATER CONVEYANCE EFFICIENCY (EC) -- 6.3.2 WATER APPLICATION EFFICIENCY (EA) -- 6.3.3 SCHEME IRRIGATION EFFICIENCY -- 6.4 IRRIGATION COMMAND AREA -- 6.4.1 IRRIGATION INTENSITY -- 6.4.2 PEAK IRRIGATION DEMAND -- 6.4.3 WATER ALLOWANCE -- 6.4.4 DUTY, DELTA, AND BASE PERIOD -- 6.4.4.1 Duty, D -- 6.4.4.2 Delta, Δ -- 6.4.4.3 Base Period, B -- 6.4.5 RELATIONSHIP BETWEEN DUTY, DELTA, AND BASE PERIOD -- 6.5 DETERMINATION OF IRRIGATED COMMAND AREA, PROJECT DUTY, DUTY AT OUTLET HEAD AND CANAL HEAD, WATER ALLOWANCE, AND CANAL CAPACITY -- REFERENCES -- FURTHER READING -- 7 - DESIGN OF IRRIGATION CANALS -- 7.1 TYPICAL CANAL GEOMETRY -- 7.2 DESIGN OF LINED CANALS. , 7.2.1 DESIGN OF THE MOST ECONOMICAL SECTION -- 7.3 DESIGN OF STABLE UNLINED CANALS USING THE REGIME THEORY -- 7.4 DESIGN OF UNLINED CANAL USING TRACTIVE FORCE APPROACH -- 7.4.1 DESIGN OF UNLINED CANAL USING KENNEDY'S THEORY -- 7.5 DETERMINING L-SECTION OF THE CANAL -- 7.6 DEVELOPMENT OF DRAW-OFF STATEMENT FOR THE CANAL -- 7.7 CONCLUDING REMARKS -- REFERENCES -- FURTHER READING -- 8 - DESIGN OF CANAL OUTLETS AND THEIR CALIBRATION -- 8.1 CLASSIFICATION OF OUTLETS -- 8.2 PERFORMANCE OF MODULE OR OUTLET -- 8.2.1 FLEXIBILITY -- 8.2.2 PROPORTIONALITY AND SETTING -- 8.2.3 SENSITIVITY -- 8.3 DESIGN OF OUTLETS: DISCHARGE THROUGH OUTLETS -- 8.3.1 NONMODULAR OUTLET -- 8.3.2 SEMIMODULAR OUTLET -- 8.3.2.1 Pipe Outlet Discharging Freely Into the Water Course -- 8.3.2.2 Open Flume Outlet -- 8.3.2.3 Adjustable Orifice Semimodules -- 8.4 CALIBRATION OF OUTLET -- 8.5 CONCLUDING REMARKS -- REFERENCES -- FURTHER READING -- 9 - CANAL ARCHITECTURE -- 9.1 CANAL CLASSIFICATION -- 9.1.1 CLASSIFICATION ACCORDING TO FUNCTION OF THE CANAL -- 9.1.2 CLASSIFICATION ACCORDING TO ALIGNMENT -- 9.1.3 CLASSIFICATION ACCORDING TO NATURE OF SOURCE AND SUPPLY -- 9.1.4 CLASSIFICATION ACCORDING TO DISCHARGE AND RELATIVE IMPORTANCE -- 9.2 COMMAND AREA SURVEY -- 9.2.1 SURVEY MAPS FOR INITIAL PLANNING -- 9.2.2 SURVEY MAPS FOR DETAILED PLANNING -- 9.3 CANAL ALIGNMENT -- 9.3.1 IMPORTANT POINTS FOR CANAL ALIGNMENT -- 9.4 MARKING AND FINALIZATION OF AREA PROPOSED TO BE IRRIGATED BY EACH CHANNEL -- 9.5 DESIGN OF CANAL -- 9.6 CONCLUDING REMARKS -- REFERENCES -- FURTHER READING -- 10 - IRRIGATION METHODS -- 10.1 METHODS OF IRRIGATION -- 10.1.1 BASIN IRRIGATION -- 10.1.2 FURROW IRRIGATION -- 10.1.3 BORDER IRRIGATION -- 10.1.4 SPRINKLER IRRIGATION -- 10.1.5 DRIP IRRIGATION -- 10.2 FACTORS AFFECTING THE SELECTION OF IRRIGATION METHOD -- 10.3 LAYOUT OF BASIN IRRIGATION. , 10.4 LAYOUT FOR FURROW IRRIGATION.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    New York :Cambridge University Press,
    Keywords: Hydrology-Statistical methods. ; Electronic books.
    Description / Table of Contents: This book provides an overview of different systems of frequency distributions, their properties, and applications to the fields of water resources and environmental engineering. A variety of systems are covered and illustrated with real-world data, providing a valuable reference for researchers, graduate students, and professionals.
    Type of Medium: Online Resource
    Pages: 1 online resource (314 pages)
    Edition: 1st ed.
    ISBN: 9781108863223
    DDC: 551.48011
    Language: English
    Note: Cover -- Half-title -- Title page -- Copyright information -- Dedication -- Contents -- Preface -- Acknowledgments -- 1 Introduction -- 1.1 Random Variables in Environmental and Water Engineering -- 1.1.1 Rainfall -- 1.1.2 Temperature -- 1.1.3 Frost, Fog, and Sunshine Hours -- 1.1.4 Wind -- 1.1.5 Snowfall -- 1.1.6 Runoff -- 1.1.7 Flood -- 1.1.8 Drought -- 1.1.9 Hydrogeology -- 1.1.10 Water Quality -- 1.2 Systems of Frequency Distributions -- 1.2.1 Stoppa System -- 1.2.2 Dagum System -- 1.2.3 Johnson System -- 1.2.4 General Classification -- 1.3 Need for Systems of Frequency Distributions -- 1.4 Organization of the Book -- References -- 2 Pearson System of Frequency Distributions -- 2.1 Introduction -- 2.2 Differential Equation of Pearson System -- 2.3 Generalization of Pearson System -- 2.4 Pearson Distributions -- 2.4.1 Nonnegative Discriminant -- 2.4.2 Negative Discriminant -- 2.4.3 Pearson Type 0 Distribution -- 2.4.4 Pearson Type I Distribution -- 2.4.5 Pearson Type II Distribution -- 2.4.6 Pearson Type III Distribution -- 2.4.7 Pearson Type IV Distribution -- 2.4.8 Pearson Type V Distribution -- 2.4.9 Pearson Type VI Distribution -- 2.4.10 Pearson Type VII Distribution -- 2.4.11 Pearson Type VIII Distribution -- 2.4.12 Pearson Type IX Distribution -- 2.4.13 Pearson Type X Distribution -- 2.4.14 Pearson Type XI Distribution -- 2.4.15 Pearson Type XII Distribution -- 2.5 Graphical Representation of Shapes Based on the Relation of α23 versus d and α23 versus α4 -- 2.5.1 Graphical Representation of Pearson Distributions -- 2.5.2 Type I(U): -- 2.5.3 Type III(B): -- 2.5.4 Type IV(B): -- 2.5.5 Type VI: -- 2.6 Application -- Normal Distribution -- Gamma Distribution -- Pearson III Distribution -- Log-Pearson III Distribution -- 2.7 Conclusion -- References -- 3 Burr System of Frequency Distributions -- 3.1 Introduction. , 3.2 Characteristics of Probability Distribution Functions -- 3.3 Burr Hypothesis -- 3.4 Burr System of Frequency Distributions -- 3.4.1 Burr I Distribution -- 3.4.2 Burr II Distribution -- 3.4.3 Burr III Distribution -- 3.4.4 Burr IV Distribution -- 3.4.5 Burr V Distribution -- 3.4.6 Burr VI Distribution -- 3.4.7 Burr VII Distribution -- 3.4.8 Burr VIII Distribution -- 3.4.9 Burr IX Distribution -- 3.4.10 Burr X Distribution -- 3.4.11 Burr XI Distribution -- 3.4.12 Burr XII Distribution -- 3.5 Parameter Estimation by Cumulative Moment Theory -- 3.6 Application -- 3.6.1 Peak Flow -- 3.6.2 Annual Rainfall Amount -- 3.6.3 Monthly Sediment Yield -- 3.6.4 Maximum Daily Precipitation -- 3.7 Conclusion -- References -- 4 D'Addario System of Frequency Distributions -- 4.1 Introduction -- 4.2 D'Addario System -- 4.2.1 Pareto Type I Distribution -- 4.2.2 Pareto Type II Distribution -- 4.2.3 Lognormal (2-Parameter) Distribution -- 4.2.4 Lognormal (3-Parameter) Distribution -- 4.2.5 Davis Distribution -- 4.2.6 Amoroso Distribution -- 4.3 Application -- 4.3.1 Peak Flow -- 4.3.2 Monthly Discharge -- 4.3.3 Deseasonalized TPN -- 4.3.4 Daily Maximum Precipitation -- 4.4 Conclusion -- References -- 5 Dagum System of Frequency Distributions -- 5.1 Introduction -- 5.2 Dagum System of Distributions -- 5.3 Derivation of Frequency Distributions -- 5.3.1 Pareto Type I Distribution -- 5.3.2 Pareto Type II Distribution -- 5.3.3 Pareto Type III Distribution -- 5.3.4 Benini Distribution -- 5.3.5 Weibull Distribution -- 5.3.6 Log-Gompertz Distribution -- 5.3.7 Fisk Distribution -- 5.3.8 Singh-Maddala Distribution -- 5.3.9 Dagum I Distribution -- 5.3.10 Dagum II Distribution -- 5.3.11 Dagum III Distribution -- 5.4 Application -- 5.4.1 Monthly Sediment Yield -- 5.4.2 Peak Flow -- 5.4.3 Maximum Daily Precipitation -- 5.4.4 Drought (Total Flow Deficit) -- 5.5 Conclusion. , References -- 6 Stoppa System of Frequency Distributions -- 6.1 Introduction -- 6.2 Stoppa System of Distributions -- 6.3 Derivation of Frequency Distributions -- 6.3.1 Generalized Power Distribution (Stoppa Type I Distribution) -- 6.3.2 Generalized Pareto Type II Distribution -- 6.3.3 Generalized Exponential Distribution (Type III Distribution) -- 6.3.4 Stoppa Type IV Distribution -- 6.3.5 Stoppa Type V Distribution -- 6.3.6 Four-Parameter Generalized Pareto Distribution -- 6.4 Relation between Dagum and Stoppa Systems -- 6.5 Relations among Burr distributions and Dagum and Stoppa Systems -- 6.6 Application -- 6.6.1 Monthly Suspended Sediment -- 6.6.2 Annual Rainfall Amount -- 6.6.3 Peak Flow -- 6.6.4 Maximum Daily Precipitation -- 6.6.5 Drought (Total Flow Deficit) -- 6.7 Conclusion -- References -- 7 Esteban System of Frequency Distributions -- 7.1 Introduction -- 7.2 Esteban System of Distributions -- 7.2.1 Three-Parameter Gamma Distribution -- 7.2.2 Special Cases of Generalized Gamma Distribution -- 7.2.3 Generalized Beta Distribution of First Kind -- 7.2.4 Special Cases of GB1 Distribution -- 7.2.5 Generalized Beta Distribution of Second Kind -- 7.2.6 Special Cases of GB2 Distribution -- 7.3 Application -- 7.3.1 TPN -- 7.3.2 Peak Flow -- 7.3.3 Drought (Total Flow Deficit) -- 7.3.4 Annual Rainfall -- 7.4 Conclusion -- References -- 8 Singh System of Frequency Distributions -- 8.1 Introduction -- 8.2 Singh System of Distributions -- 8.3 Conclusion -- References -- 9 Systems of Frequency Distributions Using Bessel Functions and Cumulants -- 9.1 Introduction -- 9.2 Bessel Function Distributions -- 9.2.1 Moments of Bessel Function Distributions -- 9.2.2 Bessel Function Line -- 9.2.3 Inverse Gaussian Distribution -- 9.2.4 Other Distributions -- Product of Two Bessel Functions of the First Kind (Im, In). , Product of the Two Bessel Functions of the Second Kind (Km, Kn) -- Product of the Bessel Functions of the First Kind (Im) and the Second Kind (Kn) -- 9.3 Frequency Distributions by Series Approximation -- 9.3.1 Chebyshev (Probabilists')-Hermite Polynomials -- 9.3.2 Cumulants -- 9.3.3 Basic Concept of Approximating Frequency Distribution with Series Approximation -- 9.3.4 Gram-Charlier Type A Series -- 9.3.5 Edgeworth Series with Baseline Gaussian Distribution -- 9.3.6 Gram-Charlier/Edgeworth Series with Non-Gaussian Distribution -- Gamma Distribution as Baseline PDF -- Beta Distribution as Baseline PDF -- 9.4 Applications -- 9.5 Conclusion -- References -- 10 Frequency Distributions by Entropy Maximization -- 10.1 Introduction -- 10.2 Entropy Maximization -- 10.3 Application -- 10.3.1 Peak Flow -- 10.3.2 Monthly Sediment Yield -- 10.4 Conclusion -- References -- 11 Transformations for Frequency Distributions -- 11.1 Introduction -- 11.2 Transformation to Normal Distribution -- 11.3 Transformation of Normal Distribution: The Johnson family -- 11.4 Transformation Based on the First Law of Laplace -- 11.5 Transformation of Logistic Distribution -- 11.6 Transformation of Beta Distribution -- 11.7 Transformation of Gamma Distribution -- 11.8 Transformation of Student-t Distribution -- 11.9 Application -- 11.9.1 Peak Flow and Maximum Daily Precipitation -- 11.9.2 Monthly Sediment and Annual Rainfall -- 11.10 Conclusions -- References -- 12 Genetic Theory of Frequency -- 12.1 Basic Concept of Elementary Errors -- 12.2 General Discussion of Charlier Type A and B Curves -- 12.3 Charlier Type A Curve -- 12.4 Charlier Type B Curve -- 12.5 Extensions by Wicksell -- References -- Appendix Datasets for Applications -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...