GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Nature Research  (8)
  • Oxford Univ. Press  (4)
  • 1
    Publication Date: 2021-02-08
    Description: Mid-ocean ridges spreading at ultraslow rates of less than 20 mm yr−1 can exhume serpentinized mantle to the seafloor, or they can produce magmatic crust. However, seismic imaging of ultraslow-spreading centres has not been able to resolve the abundance of serpentinized mantle exhumation, and instead supports 2 to 5 km of crust. Most seismic crustal thickness estimates reflect the depth at which the 7.1 km s−1 P-wave velocity is exceeded. Yet, the true nature of the oceanic lithosphere is more reliably deduced using the P- to S-wave velocity (Vp/Vs) ratio. Here we report on seismic data acquired along off-axis profiles of older oceanic lithosphere at the ultraslow-spreading Mid-Cayman Spreading Centre. We suggest that high Vp/Vs ratios greater than 1.9 and continuously increasing P-wave velocity, changing from 4 km s−1 at the seafloor to greater than 7.4 km s−1 at 2 to 4 km depth, indicate highly serpentinized peridotite exhumed to the seafloor. Elsewhere, either magmatic crust or serpentinized mantle deformed and uplifted at oceanic core complexes underlies areas of high bathymetry. The Cayman Trough therefore provides a window into mid-ocean ridge dynamics that switch between magma-rich and magma-poor oceanic crustal accretion, including exhumation of serpentinized mantle covering about 25% of the seafloor in this region.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: What process triggered the Mediterranean Sea restriction remains debated since the discovery of the Messinian Salinity Crisis (MSC). Recent hypotheses infer that the MSC initiated after the closure of the Atlantic-Mediterranean Betic and Rifean corridors, being modulated through restriction at the Gibraltar Strait. These hypotheses however, do not integrate contemporaneous speciation patterns of the faunal exchange between Iberia and Africa and geological features like the evaporite distribution. Exchange of terrestrial biota occurred before, during and after the MSC, and speciation models support an exchange path across the East Alborán basin (EAB) located a few hundreds of km east of the Gibraltar Strait. Yet, a structure explaining jointly geological and biological observations has remained undiscovered. We present new seismic data showing the velocity structure of a well-differentiated 14-17-km thick volcanic arc in the EAB. Isostatic considerations support that the arc-crust buoyancy created an archipelago and filter bridge across the EAB. Sub-aerial erosional unconformities and onlap relationships support that the arc was active between ~10-6 Ma. Progressive arc build-up leading to an archipelago and its later subsidence can explain the extended exchange of terrestrial biota between Iberia and Africa (~7-3 Ma), and agrees with patterns of biota speciation and terrestrial fossil distribution before the MSC (10-6.2 Ma). In this scenario, the West Alboran Basin (WAB) could then be the long-postulated open-marine refuge for the Mediterranean taxa that repopulated the Mediterranean after the MSC, connected to the deep restricted Mediterranean basin through a sill at the Alboran volcanic arc archipelago.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-07-10
    Description: The Tonga-Kermadec forearc is deforming in response to on-going subduction of the Pacific Plate beneath the Indo-Australian Plate. Previous research has focussed on the structural development of the forearc where large bathymetric features such as the Hikurangi Plateau and Louisville Ridge seamount chain are being subducted. Consequently, knowledge of the ‘background’ forearc in regions of normal plate convergence is limited. We report on an ∼250-km-long multichannel seismic reflection profile that was shot perpendicular to the Tonga-Kermadec trench at ∼28°S to determine the lateral and temporal variations in the structure, stratigraphy and deformation of the Kermadec forearc resulting solely from Pacific Plate subduction. Interpretation of the seismic profile, in conjunction with regional swath bathymetry data, shows that the Pacific Plate exhibits horst and graben structures that accommodate bending-induced extensional stresses, generated as the trenchward dip of the crust increases. Trench infill is also much thicker than expected at 1 km which, we propose, results from increased sediment flux into and along the trench. Pervasive normal faulting of the mid-trench slope most likely accommodates the majority of the observed forearc extension in response to basal subduction erosion, and a structural high is located between the mid- and upper-trench slopes. We interpret this high as representing a dense and most likely structurally robust region of crust lying beneath this region. Sediment of the upper-trench slope documents depositional hiatuses and on-going uplift of the arc. Strong along-arc currents appear to erode the Kermadec volcanic arc and distribute this sediment to the surrounding basins, while currents over the forearc redistribute deposits as sediment waves. Minor uplift of the transitional Kermadec forearc, observed just to the north of the profile, appears to relate to an underlying structural trend as well as subduction of the Louisville Ridge seamount chain 250 km to the north. Relative uplift of the Kermadec arc is observed from changes in the tilt of upper-trench slope deposits and extensional faulting of the basement immediately surrounding the Louisville Ridge.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-07-10
    Description: New marine geophysical data recorded across the Tonga-Kermadec subduction zone are used to image deformation and seismic velocity structures of the forearc and Pacific Plate where the Louisville Ridge seamount chain subducts. Due to the obliquity of the Louisville Ridge to the trench and the fast 128 mm yr−1 south–southwest migration of the ridge-trench collision zone, post-, current and pre-seamount subduction deformation can be investigated between 23°S and 28°S. We combine our interpretations from the collision zone with previous results from the post- and pre-collision zones to define the along-arc variation in deformation due to seamount subduction. In the pre-collision zone the lower-trench slope is steep, the mid-trench slope has ∼3-km-thick stratified sediments and gravitational collapse of the trench slope is associated with basal erosion by subducting horst and graben structures on the Pacific Plate. This collapse indicates that tectonic erosion is a normal process affecting this generally sediment starved subduction system. In the collision zone the trench-slope decreases compared to the north and south, and rotation of the forearc is manifest as a steep plate boundary fault and arcward dipping sediment in a 12-km-wide, ∼2-km-deep mid-slope basin. A ∼3 km step increase in depth of the middle and lower crustal isovelocity contours below the basin indicates the extent of crustal deformation on the trench slope. At the leading edge of the overriding plate, upper crustal P-wave velocities are ∼4.0 km s−1 and indicate the trench fill material is of seamount origin. Osbourn Seamount on the outer rise has extensional faulting on its western slope and mass wasting of the seamount provides the low Vp material to the trench. In the post-collision zone to the north, the trench slope is smooth, the trench is deep, and the crystalline crust thins at the leading edge of the overriding plate where Vp is low, ∼5.5 km s−1. These characteristics are attributed to a greater degree of extensional collapse of the forearc in the wake of seamount subduction. The northern end of a seismic gap lies at the transition from the smooth lower-trench slope of the post-collision zone, to the block faulted and elevated lower-trench slope in the collision zone, suggesting a causative link between the collapse of the forearc and seismogenesis. Along the forearc, the transient effects of a north-to-south progression of ridge subduction are preserved in the geomorphology, whereas longer-term effects may be recorded in the ∼80 km offset in trench strike at the collision zone itself.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: The TAMMAR segment of the Mid-Atlantic Ridge forms a classic propagating system centred about two degrees south of the Kane Fracture Zone. The segment is propagating to the south at a rate of 14 mm yr−1, 15 per cent faster than the half-spreading rate. Here, we use seismic refraction data across the propagating rift, sheared zone and failed rift to investigate the crustal structure of the system. Inversion of the seismic data agrees remarkably well with crustal thicknesses determined from gravity modelling. We show that the crust is thickened beneath the highly magmatic propagating rift, reaching a maximum thickness of almost 8 km along the seismic line and an inferred (from gravity) thickness of about 9 km at its centre. In contrast, the crust in the sheared zone is mostly 4.5–6.5 km thick, averaging over 1 km thinner than normal oceanic crust, and reaching a minimum thickness of only 3.5 km in its NW corner. Along the seismic line, it reaches a minimum thickness of under 5 km. The PmP reflection beneath the sheared zone and failed rift is very weak or absent, suggesting serpentinisation beneath the Moho, and thus effective transport of water through the sheared zone crust. We ascribe this increased porosity in the sheared zone to extensive fracturing and faulting during deformation. We show that a bookshelf-faulting kinematic model predicts significantly more crustal thinning than is observed, suggesting that an additional mechanism of deformation is required. We therefore propose that deformation is partitioned between bookshelf faulting and simple shear, with no more than 60 per cent taken up by bookshelf faulting.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-02-08
    Description: Crustal properties of young oceanic lithosphere have been examined extensively, but the nature of the mantle lithosphere underneath remains elusive. Using a novel wide-angle seismic imaging technique, here we show the presence of two sub-horizontal reflections at ∼11 and ∼14.5 km below the seafloor over the 0.51–2.67 Ma old Juan de Fuca Plate. We find that the observed reflectors originate from 300–600-m-thick layers, with an ∼7–8% drop in P-wave velocity. They could be explained either by the presence of partially molten sills or frozen gabbroic sills. If partially molten, the shallower sill would define the base of a thin lithosphere with the constant thickness (11 km), requiring the presence of a mantle thermal anomaly extending up to 2.67 Ma. In contrast, if these reflections were frozen melt sills, they would imply the presence of thick young oceanic lithosphere (20–25 km), and extremely heterogeneous upper mantle.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-01-31
    Description: Large continental faults extend for thousands of kilometres to form boundaries between rigid tectonic blocks. These faults are associated with prominent topographic features and can produce large earthquakes. Here we show the first evidence of a major tectonic structure in its initial-stage, the Al-Idrissi Fault System (AIFS), in the Alboran Sea. Combining bathymetric and seismic reflection data, together with seismological analyses of the 2016 Mw 6.4 earthquake offshore Morocco – the largest event ever recorded in the area – we unveil a 3D geometry for the AIFS. We report evidence of left-lateral strike-slip displacement, characterise the fault segmentation and demonstrate that AIFS is the source of the 2016 events. The occurrence of the Mw 6.4 earthquake together with historical and instrumental events supports that the AIFS is currently growing through propagation and linkage of its segments. Thus, the AIFS provides a unique model of the inception and growth of a young plate boundary fault system.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: Oceanic crust forms at mid-ocean spreading centres through a combination of magmatic and tectonic processes, with the magmatic processes creating two distinct layers: the upper and the lower crust. While the upper crust is known to form from lava flows and basaltic dykes based on geophysical and drilling results, the formation of the gabbroic lower crust is still debated. Here we perform a full waveform inversion of wide-angle seismic data from relatively young (7–12-Myr-old) crust formed at the slow-spreading Mid-Atlantic Ridge. The seismic velocity model reveals alternating, 400–500 m thick, high- and low-velocity layers with ±200 m s−1 velocity variations, below ~2 km from the oceanic basement. The uppermost low-velocity layer is consistent with hydrothermal alteration, defining the base of extensive hydrothermal circulation near the ridge axis. The underlying layering supports that the lower crust is formed through the intrusion of melt as sills at different depths, which cool and crystallize in situ. The layering extends up to 5–15 km distance along the seismic profile, covering 300,000–800,000 years, suggesting that this form of lower crustal accretion is a stable process.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: Oceanic transform faults are seismically and tectonically active plate boundaries1 that leave scars—known as fracture zones—on oceanic plates that can cross entire ocean basins2. Current descriptions of plate tectonics assume transform faults to be conservative two-dimensional strike–slip boundaries1,3, at which lithosphere is neither created nor destroyed and along which the lithosphere cools and deepens as a function of the age of the plate4. However, a recent compilation of high-resolution multibeam bathymetric data from 41 oceanic transform faults and their associated fracture zones that covers all possible spreading rates shows that this assumption is incorrect. Here we show that the seafloor along transform faults is systemically deeper (by up to 1.6 kilometres) than their associated fracture zones, in contrast to expectations based on plate-cooling arguments. Accretion at intersections between oceanic ridges and transform faults seems to be strongly asymmetric: the outside corners of the intersections show shallower relief and more extensive magmatism, whereas the inside corners have deep nodal basins and seem to be magmatically starved. Three-dimensional viscoplastic numerical models show that plastic-shear failure within the deformation zone around the transform fault results in the plate boundary experiencing increasingly oblique shear at increasing depths below the seafloor. This results in extension around the inside corner, which thins the crust and lithosphere at the transform fault and is linked to deepening of the seafloor along the transform fault. Bathymetric data suggest that the thinned transform-fault crust is augmented by a second stage of magmatism as the transform fault intersects the opposing ridge axis. This makes accretion at transform-fault systems a two-stage process, fundamentally different from accretion elsewhere along mid-ocean ridges.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-07
    Description: The southern boundary of the Cayman Trough in the Caribbean is marked by the Swan Islands transform fault (SITF), which also represents the ocean-continent transition of the Honduras continental margin. This is one of the few places globally where a transform continental margin is currently active. The CAYSEIS experiment acquired an ∼165-km-long seismic refraction and gravity profile (P01) running across this transform margin, and along the ridge-axis of the Mid-Cayman Spreading Centre (MCSC) to the north. This profile reveals not only the crustal structure of an actively evolving transform continental margin, that juxtaposes Mesozoic-age continental crust to the south against zero-age ultraslow spread oceanic crust to the north, but also the nature of the crust and uppermost mantle beneath the ridge-transform intersection (RTI). The traveltimes of arrivals recorded by ocean-bottom seismographs (OBSs) deployed along-profile have been inverse and forward modelled, in combination with gravity modelling, to reveal an ∼25-km-thick continental crust that has been continuously thinned over a distance of ∼65 km to ∼10 km adjacent to the SITF, where it is juxtaposed against ∼3-4-km-thick oceanic crust. This thinning is primarily accommodated within the lower crust. Since Moho reflections are only sparsely observed, and, even then, only by a few OBSs located on the continental margin, the 7.5 km s-1 velocity contour is used as a proxy to locate the crust-mantle boundary along-profile. Along the MCSC, the crust-mantle boundary appears to be a transition zone, at least at the seismic wavelengths used for CAYSEIS data acquisition. Although the traveltime inversion only directly constrains the upper crust at the SITF, gravity modelling suggests that it is underlain by a higher density (〉3000 kg m-3) region spanning the width (∼15 km) of its bathymetric expression, that may reflect a broad region of metasomatism, mantle hydration or melt-depleted lithospheric mantle. At the MCSC ridge-axis to the north, the oceanic crust appears to be forming in zones, where each zone is defined by the volume of its magma supply. The ridge tip adjacent to the SITF is currently in a magma rich phase of accretion. However, there is no evidence for melt leakage into the transform zone. The width and crustal structure of the SITF suggests its motion is currently predominantly orthogonal to spreading. Comparison to CAYSEIS Profile P04, located to the west and running across-margin and through 10 Ma MCSC oceanic crust, suggests that, at about this time, motion along the SITF had a left-lateral transtensional component, that accounts for its apparently broad seabed appearance westwards.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...