GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The Cariaco basin (10° 40' N, 65° W) is an anoxic marine basin located within the trade-wind belt off the northern coast of Venezuela (Fig. 1). The climate of the Cariaco basin region has a large seasonal signal, controlled by the annual north-south migration of the Intertropical ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nature Communications 3 (2012): 803, doi:10.1038/ncomms1811.
    Description: Ventilation and mixing of oceanic gyres is important to ocean-atmosphere heat and gas transfer, and to mid-latitude nutrient supply. The rates of mode water formation are believed to impact climate and carbon exchange between the surface and mid-depth water over decadal periods. Here, a record of 14C/12C (1780–1940), which is a proxy for vertical ocean mixing, from an annually banded coral from Bermuda, shows limited inter-annual variability and a substantial Suess Effect (the decrease in 14C/12C since 1900). The Sargasso Sea mixing rates between the surface and thermocline varied minimally over the past two centuries, despite changes to mean-hemispheric climate, including the Little Ice Age and variability in the North Atlantic Oscillation. This result indicates that regional formation rates of sub-tropical mode water are stable over decades, and that anthropogenic carbon absorbed by the ocean does not return to the surface at a variable rate.
    Description: Funding provided by NSF’s Chemical Oceanography Program OCE - 0526463 and 0961980 and the Stephen Hui Trust Fund.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 6 (2016): 25902, doi:10.1038/srep25902.
    Description: The Greenland Stadial 1 (GS-1; ~12.9 to 11.65 kyr cal BP) was a period of North Atlantic cooling, thought to have been initiated by North America fresh water runoff that caused a sustained reduction of North Atlantic Meridional Overturning Circulation (AMOC), resulting in an antiphase temperature response between the hemispheres (the ‘bipolar seesaw’). Here we exploit sub-fossil New Zealand kauri trees to report the first securely dated, decadally-resolved atmospheric radiocarbon (14C) record spanning GS-1. By precisely aligning Southern and Northern Hemisphere tree-ring 14C records with marine 14C sequences we document two relatively short periods of AMOC collapse during the stadial, at ~12,920-12,640 cal BP and 12,050-11,900 cal BP. In addition, our data show that the interhemispheric atmospheric 14C offset was close to zero prior to GS-1, before reaching ‘near-modern’ values at ~12,660 cal BP, consistent with synchronous recovery of overturning in both hemispheres and increased Southern Ocean ventilation. Hence, sustained North Atlantic cooling across GS-1 was not driven by a prolonged AMOC reduction but probably due to an equatorward migration of the Polar Front, reducing the advection of southwesterly air masses to high latitudes. Our findings suggest opposing hemispheric temperature trends were driven by atmospheric teleconnections, rather than AMOC changes.
    Description: This work was part funded by the Foundation for Research, Science and Technology (FRST)—now Ministry for Business, Innovation & Employment (MBIE)-PROP-20224-SFK-UOA), a Royal Society of New Zealand grant, the Australian Research Council (FL100100195 and DP0664898) and the Natural Environment Research Council (NE/H009922/1, NE/I007660/1, NER/A/S/2001/01037 and NE/H007865/1).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 6 (2016): 29587, doi:10.1038/srep29587.
    Description: Interactions between climate, fire and CO2 are believed to play a crucial role in controlling the distributions of tropical woodlands and savannas, but our understanding of these processes is limited by the paucity of data from undisturbed tropical ecosystems. Here we use a 28,000-year integrated record of vegetation, climate and fire from West Africa to examine the role of these interactions on tropical ecosystem stability. We find that increased aridity between 28–15 kyr B.P. led to the widespread expansion of tropical grasslands, but that frequent fires and low CO2 played a crucial role in stabilizing these ecosystems, even as humidity changed. This resulted in an unstable ecosystem state, which transitioned abruptly from grassland to woodlands as gradual changes in CO2 and fire shifted the balance in favor of woody plants. Since then, high atmospheric CO2 has stabilized tropical forests by promoting woody plant growth, despite increased aridity. Our results indicate that the interactions between climate, CO2 and fire can make tropical ecosystems more resilient to change, but that these systems are dynamically unstable and potentially susceptible to abrupt shifts between woodland and grassland dominated states in the future.
    Description: This work was supported by NSF grants EAR0601998, EAR0602355, AGS0402010, ATM0401908, ATM0214525, ATM0096232 and AGS1243125 and a Chevron Centennial Fellowship at the University of Texas at Austin awarded to T.M.S.
    Keywords: Climate-change ecology ; Palaeoclimate
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nature Communications 8 (2017): 520, doi:10.1038/s41467-017-00577-6.
    Description: Contrasting Greenland and Antarctic temperatures during the last glacial period (115,000 to 11,650 years ago) are thought to have been driven by imbalances in the rates of formation of North Atlantic and Antarctic Deep Water (the ‘bipolar seesaw’). Here we exploit a bidecadally resolved 14C data set obtained from New Zealand kauri (Agathis australis) to undertake high-precision alignment of key climate data sets spanning iceberg-rafted debris event Heinrich 3 and Greenland Interstadial (GI) 5.1 in the North Atlantic (~30,400 to 28,400 years ago). We observe no divergence between the kauri and Atlantic marine sediment 14C data sets, implying limited changes in deep water formation. However, a Southern Ocean (Atlantic-sector) iceberg rafted debris event appears to have occurred synchronously with GI-5.1 warming and decreased precipitation over the western equatorial Pacific and Atlantic. An ensemble of transient meltwater simulations shows that Antarctic-sourced salinity anomalies can generate climate changes that are propagated globally via an atmospheric Rossby wave train.
    Description: This work was funded by the Australian Research Council (FL100100195, DP170104665 and SR140300001) and the Natural Environment Research Council (NE/H009922/1 and NE/H007865/1).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...