GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • National Academy of Sciences  (1)
  • 1
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Reysenbach, A. L., St John, E., Meneghin, J., Flores, G. E., Podar, M., Dombrowski, N., Spang, A., L'Haridon, S., Humphris, S. E., de Ronde, C. E. J., Caratori Tontini, F., Tivey, M., Stucker, V. K., Stewart, L. C., Diehl, A., & Bach, W. Complex subsurface hydrothermal fluid mixing at a submarine arc volcano supports distinct and highly diverse microbial communities. Proceedings of the National Academy of Sciences of the United States of America, 117(51), (2020): 202019021, doi:10.1073/pnas.2019021117.
    Description: Hydrothermally active submarine volcanoes are mineral-rich biological oases contributing significantly to chemical fluxes in the deep sea, yet little is known about the microbial communities inhabiting these systems. Here we investigate the diversity of microbial life in hydrothermal deposits and their metagenomics-inferred physiology in light of the geological history and resulting hydrothermal fluid paths in the subsurface of Brothers submarine volcano north of New Zealand on the southern Kermadec arc. From metagenome-assembled genomes we identified over 90 putative bacterial and archaeal genomic families and nearly 300 previously unknown genera, many potentially endemic to this submarine volcanic environment. While magmatically influenced hydrothermal systems on the volcanic resurgent cones of Brothers volcano harbor communities of thermoacidophiles and diverse members of the superphylum “DPANN,” two distinct communities are associated with the caldera wall, likely shaped by two different types of hydrothermal circulation. The communities whose phylogenetic diversity primarily aligns with that of the cone sites and magmatically influenced hydrothermal systems elsewhere are characterized predominately by anaerobic metabolisms. These populations are probably maintained by fluids with greater magmatic inputs that have interacted with different (deeper) previously altered mineral assemblages. However, proximal (a few meters distant) communities with gene-inferred aerobic, microaerophilic, and anaerobic metabolisms are likely supported by shallower seawater-dominated circulation. Furthermore, mixing of fluids from these two distinct hydrothermal circulation systems may have an underlying imprint on the high microbial phylogenomic diversity. Collectively our results highlight the importance of considering geologic evolution and history of subsurface processes in studying microbial colonization and community dynamics in volcanic environments.
    Description: We thank the captain and crew of the R/V Thompson and the engineers from Woods Hole Oceanographic Institution for the successful operation of ROV Jason. The project was funded by NSF grants OCE‐1558356 (Principal Investigator S.E.H.) and OCE-1558795 (Principal Investigator A.-L.R.). S.L. received a grant from the University of Brest to work in the A.-L.R. laboratory. A travel fund from Interridge enabled A.D. to participate on the R/V Thompson cruise. Funding for this work for C.E.J.d.R., F.C.T., V.K.S., and L.C.S. was provided by the New Zealand government. A.S. was supported by the Swedish Research Council (Vetenskapsrådet starting grant 2016-03559 to A.S.) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Dutch Research Council) Foundation of the Netherlands Organization for Scientific Research (Women In Science Excel [WISE] fellowship to A.S.). A.-L.R. and E.S.J. thank Rika Anderson for helpful methodological discussions and Sean Sylva for assistance in shipboard geochemical analysis.
    Keywords: Metagenomics ; Deep-sea hydrothermal ; Thermophiles ; Archaea ; Volcanics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...