GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © National Academy of Sciences, 2006. This article is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences 103 (2006): 6448-6453, doi:10.1073/pnas.0600830103.
    Description: Submersible exploration of the Samoan hotspot revealed a new, 300-m-tall, volcanic cone, named Nafanua, in the summit crater of Vailulu'u seamount. Nafanua grew from the 1,000-m-deep crater floor in 〈4 years and could reach the sea surface within decades. Vents fill Vailulu'u crater with a thick suspension of particulates and apparently toxic fluids that mix with seawater entering from the crater breaches. Low-temperature vents form Fe oxide chimneys in many locations and up to 1-m-thick layers of hydrothermal Fe floc on Nafanua. High-temperature (81°C) hydrothermal vents in the northern moat (945-m water depth) produce acidic fluids (pH 2.7) with rising droplets of (probably) liquid CO2. The Nafanua summit vent area is inhabited by a thriving population of eels (Dysommina rugosa) that feed on midwater shrimp probably concentrated by anticyclonic currents at the volcano summit and rim. The moat and crater floor around the new volcano are littered with dead metazoans that apparently died from exposure to hydrothermal emissions. Acid-tolerant polychaetes (Polynoidae) live in this environment, apparently feeding on bacteria from decaying fish carcasses. Vailulu'u is an unpredictable and very active underwater volcano presenting a potential long-term volcanic hazard. Although eels thrive in hydrothermal vents at the summit of Nafanua, venting elsewhere in the crater causes mass mortality. Paradoxically, the same anticyclonic currents that deliver food to the eels may also concentrate a wide variety of nektonic animals in a death trap of toxic hydrothermal fluids.
    Description: This work was supported by the National Oceanic and Atmospheric Administration (NOAA) Oceans Exploration and the Hawaii Undersea Research Laboratory–NOAA Undersea Research Program, the National Science Foundation, the Australian Research Council, and the SERPENT program.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 5598800 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), 202. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in McDermott, J. M., Sylva, S. P., Ono, S., German, C. R., & Seewald, J. S. Abiotic redox reactions in hydrothermal mixing zones: decreased energy availability for the subsurface biosphere. Proceedings of the National Academy of Sciences of the United States of America, 117(34), (2020): 20453-20461, doi:10.1073/pnas.2003108117.
    Description: Subseafloor mixing of high-temperature hot-spring fluids with cold seawater creates intermediate-temperature diffuse fluids that are replete with potential chemical energy. This energy can be harnessed by a chemosynthetic biosphere that permeates hydrothermal regions on Earth. Shifts in the abundance of redox-reactive species in diffuse fluids are often interpreted to reflect the direct influence of subseafloor microbial activity on fluid geochemical budgets. Here, we examine hydrothermal fluids venting at 44 to 149 °C at the Piccard hydrothermal field that span the canonical 122 °C limit to life, and thus provide a rare opportunity to study the transition between habitable and uninhabitable environments. In contrast with previous studies, we show that hydrocarbons are contributed by biomass pyrolysis, while abiotic sulfate (SO42−) reduction produces large depletions in H2. The latter process consumes energy that could otherwise support key metabolic strategies employed by the subseafloor biosphere. Available Gibbs free energy is reduced by 71 to 86% across the habitable temperature range for both hydrogenotrophic SO42− reduction to hydrogen sulfide (H2S) and carbon dioxide (CO2) reduction to methane (CH4). The abiotic H2 sink we identify has implications for the productivity of subseafloor microbial ecosystems and is an important process to consider within models of H2 production and consumption in young oceanic crust.
    Description: Financial support was provided by the National Aeronautics and Space Administration (NASA) Astrobiology program (Awards NNX09AB75G and 80NSSC19K1427 to C.R.G. and J.S.S.) and the NSF (Award OCE-1061863 to C.R.G. and J.S.S.). Ship and vehicle time for cruise FK008 was provided by the Schmidt Ocean Institute. We thank the ROV Jason II and HROV Nereus groups, and the captain, officers, and crew of R/V Atlantis (AT18-16) and R/V Falkor (FK008) for their dedication to skillful operations at sea. We thank our scientific colleagues from both cruises, as well as Meg Tivey, Frieder Klein, and Scott Wankel for insightful discussions. We are grateful to the editor and two anonymous reviewers for providing helpful comments and suggestions.
    Keywords: Hydrothermal vent ; Subsurface biosphere ; Bioenergetics ; Biogeochemistry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...