GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Massachusetts Institute of Technology and Woods Hole Oceanographic Institution  (1)
  • San Diego :Elsevier Science & Technology,  (1)
Publisher
Language
Years
  • 1
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Artificial satellites in earth sciences. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (509 pages)
    Edition: 1st ed.
    ISBN: 9780080516585
    Series Statement: Issn Series ; v.Volume 69
    DDC: 551.46/0028
    Language: English
    Note: Cover -- Contents -- Contributors -- Preface -- Chapter 1. Satellite Altimetry -- 1. Introduction -- 2. Radar Measurement Principles -- 3. Range Estimation -- 4. Precision Orbit Determination -- 5. Geophysical Effects on the Sea Surface Topography -- 6. Significant Wave Height Estimation -- 7. Wind-Speed Estimation -- 8. TOPEX/POSEIDON Mission Design and Performance -- 9. Outlook for Future Altimeter Missions -- Acknowledgments -- References -- Chapter 2. Large-Scale Ocean Circulation -- 1. Introduction -- 2. The Ocean General Circulation -- 3. The Temporal Variability -- 4. Conclusions -- Acknowledgments -- References -- Chapter 3. Ocean Currents and Eddies -- 1. Introduction -- 2. Altimeter Data Processing for Mesoscale Studies -- 3. Ocean Currents -- 4. Mesoscale Eddies -- 5. Conclusions -- Acknowledgments -- References -- Chapter 4. Tropical Ocean Variability -- 1. Introduction -- 2. Tropical Pacific -- 3. Indian Ocean -- 4. Tropical Atlantic -- 5. Conclusion -- Acknowledgments -- References -- Chapter 5. Data Assimilation by Models -- 1. Introduction -- 2. Examples and Merits of Data Assimilation -- 3. Data Assimilation as an Inverse Problem -- 4. Assimilation Methodologies -- 5. Practical Issues of Assimilation -- 6. Summary and Outlook -- Acknowledgments -- References -- Chapter 6. Ocean Tides -- 1. Introduction -- 2. Mathematical Representation of Ocean Tides -- 3. Status Before High-Precision Satellite Altimetry -- 4. Methodologies for Extracting Ocean Tides from Altimetry -- 5. The Semi-Diurnal and Diurnal Tides over the Deep Ocean -- 6. The Long Period Ocean Tides -- 7. Internal Tides -- 8. The Tides over Shallow Waters -- 9. Tidal Energetics and Satellite Altimetry -- 10. Applications -- 11. Conclusions -- Acknowledgments -- References -- Chapter 7. Ocean Surface Waves -- 1. Introduction -- 2. Wave Modeling and Altimetry. , 3. Wave Climate Studies with Altimeter Data -- 4. Conclusions -- 5. Glossary -- Acknowledgments -- References -- Chapter 8. Sea Level Change -- 1. Introduction -- 2. The Tide Gauge Record and its Limitations -- 3. Satellite Altimeter Measurements of Sea-Level Change -- 4. Calibration of Satellite Altimeter Measurements Using Tide Gauge Data -- 5. Detecting Changes in the Rate of Sea-Level Rise -- 6. Global Mean Changes in Sea Level, Sea-Surface Temperature, and Precipitable Water -- 7. Spatial Variations of Sea-Level Change and Sea-Surface Temperature -- 8. Linking Together Different Satellite Altimeter Missions -- 9. Conclusions -- Acknowledgments -- References -- Chapter 9. Ice Sheet Dynamics and Mass Balance -- 1. Introduction -- 2. Radar Altimeter Measurement of Ice Sheet Surface Elevations -- 3. Greenland and Antarctica Ice Sheet Topography -- 4. Ice Surface Slopes and Driving Stresses -- 5. Measurement of Ice Margins -- 6. Surface Elevation Changes and Mass Balance -- Acknowledgments -- References -- Chapter 10. Applications to Geodesy -- 1. Introduction -- 2. Mean Sea Surface Mapping -- 3. Gravity Recovery -- 4. New Frontiers -- 5. Concluding Remarks -- Acknowledgments -- References -- Chapter 11. Applications to Marine Geophysics -- 1. Introduction -- 2. Filtering the Long-Wavelength Geoid Signal -- 3. Geoid Anomalies and Isostatic Compensation -- 4. Mechanical Behavior of Oceanic Plates: Flexure under Seamount Loading -- 5. Thermal Evolution of the Oceanic Lithosphere -- 6. Oceanic Hotspot Swells -- 7. Short and Medium Wavelength Lineations in the Marine Geoid -- 8. Mapping the Seafloor Tectonic Fabric -- 9. Conclusions -- Acknowledgments -- References -- Chapter 12. Bathymetric Estimation -- 1. Introduction -- 2. Gravity Anomaly and Sea Surface Slopes -- 3. Limitations of Radar Alitmetry for Gravity Field Recovery -- 4. Forward Models. , 5. Inverse Approaches -- 6. Data Availability and Case Study: Bathymetric Estimation -- 7. Prospects for the Future -- 8. Appendix: Interaction of the Radar Pulse with the Rough Ocean Surface -- References -- Index -- Color Plate Section.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February, 1980
    Description: The structure of the inertial peak in deep ocean kinetic energy spectra is studied here. Records were obtained from Polymode arrays deployed in the Western North Atlantic Ocean (40°W to 70°W, 15°N to 42°N). The results are interpreted both in terms of local sources and of turning point effects on internal waves generated at lower latitudes. In most of the data, there is a prominent inertial peak slightly above f; however, the peak height above the background continuum varies with depth and geographical environment. Three classes of environment and their corresponding spectra emerge from peak height variations: class 1 is the 1500 m level near the Mid-Atlantic Ridge, with the greatest peak height of 18 db; class 2 includes (a) the upper ocean (depth less than 2000 m), (b) the deep ocean (depth greater than 2000 m) over rough topography, and (c) the deep ocean underneath the Gulf Stream, with intermediate peak height of 11.5 db; class 3 is the deep ocean over smooth topography, with the lowest peak height of 7.5 db. Near f, the horizontal coherence scale is 0(60 km) at depths from 200 m to 600 m, and the vertical coherence scale is O(200 m) just below the main thermocline. A one turning point model is developed to describe inertial waves at mid-latitudes, based on the assumption that inertial waves are randomly generated at lower latitudes (global generation) where their frequency-wavenumber spectrum is given by the model of Garrett and Munk (1972 a, 1975). Using the globally valid wave functions obtained by Munk and Phillips (1968), various frequency spectra near f are calculated numerically. The model yields a prominent inertial peak of 7 db in the horizontal velocity spectrum but no peaks in the temperature spectrum. The model is latitudinally dependent: the frequency shift and bandwidth of the inertial peak decrease with latitude; energy level near f is minimum at about 30° and higher at low and high latitudes. The observations of class 3 can be well-described by the model; a low zonal wavenumber cutoff is required to produce the observed frequency shift of the inertial peak. The differences between the global generation model and the observations of class 1 and class 2 are interpreted as the effects of local sources. A locally forced model is developed based on the latitudinal modal decomposition of a localized source function. Asymptotic eigensolutions of the Laplace's tidal equation are therefore derived and used as a set of expansion functions. The forcing is through a vertical velocity field specified at the top or bottom boundaries of the ocean. For white noise forcing, the horizontal velocity spectrum of the response has an inertial peak which diminishes in the far-field. With the forcing located at either the surface or the bottom, several properties of the class 2 observations can be described qualitatively by a combination of the global and local models. The reflection of inertial waves from a turbulent benthic boundary layer is studied by a slab model of given depth. Frictional effects are confined to the boundary layer and modelled by a quadratic drag law. For given incident waves, reflection coefficients are found to be greater than 0.9 for the long waves which contain most of the energy. This result suggests that energy-containing inertial waves can propagate over great distance as is required by the validity of the model of global generation.
    Description: This work was supported by the National Science Foundation through grant OCE 76-80210 and its continuation OEE 78-19833.
    Keywords: Internal waves ; Ocean waves ; Turbulent boundary layer ; Harmonic functions
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...