GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Water, MDPI AG, Vol. 15, No. 11 ( 2023-06-03), p. 2128-
    Abstract: The aim of this paper is to assess the extent to which the Sad-Kalan watershed in Iran participates in floods and rank the Sad-Kalan sub-watersheds in terms of flooding potential by utilizing multi-criteria decision-making approaches. We employed the entropy of a drainage network, stream power index (SPI), slope, topographic control index (TCI), and compactness coefficient (Cc) in this investigation. After forming a decision matrix with 25 possibilities (sub-watersheds) and 5 evaluation indices, we used four MCDM approaches, including the analytic hierarchy process (AHP), best–worst method (BWM), interval rough numbers AHP (IRNAHP), picture fuzzy with AHP (PF-AHP), and picture fuzzy with linear assignment model (PF-LAM, hereafter PICALAM) algorithms, to rank the sub-watersheds. The study results demonstrated that PICALAM exhibited superior performance compared to the other methods due to its consideration of both local and global weights for each criterion. Additionally, among the methods used (AHP, BWM, and IRNAHP) that showed similar performances in ranking the sub-watersheds, the BWM method proved to be more time-efficient in the ranking process.
    Type of Medium: Online Resource
    ISSN: 2073-4441
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2521238-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Sustainability, MDPI AG, Vol. 15, No. 14 ( 2023-07-23), p. 11413-
    Abstract: Currently, natural hazards are a significant concern as they contribute to increased vulnerability, environmental degradation, and loss of life, among other consequences. Climate change and human activities are key factors that contribute to various natural hazards such as floods, landslides, droughts, and deforestation. Assam state in India experiences annual floods that significantly impact the local environment. In 2022, the flooding affected approximately 1.9 million people and 2930 villages, resulting in the loss of 54 lives. This study utilized the Google Earth Engine (GEE) cloud-computing platform to investigate the extent of flood inundation and deforestation, analyzing pre-flood and post-flood C band Sentinel-1 GRD datasets. Identifying pre- and post-flood areas was conducted using Landsat 8–9 OLI/TIRS datasets and the modified and normalized difference water index (MNDWI). The districts of Cachar, Kokrajhar, Jorhat, Kamrup, and Dhubri were the most affected by floods and deforestation. The 2022 Assam flood encompassed approximately 24,507.27 km2 of vegetation loss and 33,902.49 km2 of flood inundation out of a total area of 78,438 km2. The most affected areas were the riverine regions, the capital city Dispur, Guwahati, southern parts of Assam, and certain eastern regions. Flood hazards exacerbate environmental degradation and deforestation, making satellite-based information crucial for hazard and disaster management solutions. The findings of this research can contribute to raising awareness, planning, and implementing future disaster management strategies to protect both the environment and human life.
    Type of Medium: Online Resource
    ISSN: 2071-1050
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2518383-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Sustainability, MDPI AG, Vol. 15, No. 23 ( 2023-11-28), p. 16390-
    Abstract: In Pakistan, surface water supply for irrigation is decreasing, while water demand is increasing for agriculture production. Also, due to the fast rate of population growth, land holding capacity is decreasing. So, there is a need to develop appropriate technologies and design approaches for small-scale farmers to improve modern irrigation practices. In this study, a hydraulic and structural layout of CPIS was designed for small-scale farmers with some modifications. The hydraulic parameters and structural design of the CPIS were designed using IrriExpress and SAP2000 software, respectively. An economic analysis of the modified CPIS was carried out. The results revealed that in one complete revolution of the whole system, its span slope varied from 2.98 to 0.1%, and the wheel slope varied from 2.35 to −2.4%. The timing setting was 60% for one revolution, and the irrigation depth was 10 mm. When the time setting was reduced from 100% to 10%, the irrigation hours per cycle and irrigation depth both increased. Variendeel type-II trusses were designed for structural purposes using SAP2000 software. This design led to a 17% reduction in weight by lowering it from 1.916 to 1.5905 tons and a 44% reduction in joint count, decreasing it from 32 to 18. Our economic analysis revealed that the structural part of the system is more expensive than the hydraulic, electric and power parts for small-scale design. So, it was suggested that CPIS is suitable for land holdings from 100 to 250 acres, because when the area increases to more than 250 acres, there is no significant change in the cost. A towable system is more economical for small-scale farmers due to its lower cost per acre. This study will be helpful for the optimization of CPISs to improve water use efficiency and crop yield.
    Type of Medium: Online Resource
    ISSN: 2071-1050
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2518383-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Water, MDPI AG, Vol. 15, No. 9 ( 2023-05-02), p. 1753-
    Abstract: Understanding the likely impacts of climate change (CC) and Land Use Land Cover (LULC) on water resources (WR) is critical for a water basin’s mitigation. The present study intends to quantify the impact of (CC) and (LULC) on the streamflow (SF) of the Parvara Mula Basin (PMB) using SWAT. The SWAT model was calibrated and validated using the SWAT Calibration Uncertainty Program (SWAT-CUP) for the two time periods (2003–2007 and 2013–2016) and (2008–2010 and 2017–2018), respectively. To evaluate the model’s performance, statistical matrices such as R2, NSE, PBIAS, and RSR were computed for both the calibrated and validated periods. For both these periods, the calibrated and validated results of the model were found to be very good. In this study, three bias-corrected CMIP6 GCMs (ACCESS-CM2, BCC-CSM2-MR, and CanESM5) under three scenarios (ssp245, ssp370, and ssp585) have been adopted by assuming no change in the existing LULC (2018). The results obtained from the SWAT simulation at the end of the century show that there will be an increase in streamflow (SF) by 44.75% to 53.72%, 45.80% to 77.31%, and 48.51% to 83.12% according to ACCESS-CM2, BCC-CSM2-MR, and CanESM5, respectively. A mean ensemble model was created to determine the net change in streamflow under different scenarios for different future time projections. The results obtained from the mean ensembled model also reveal an increase in the SF for the near future (2020–2040), mid future (2041–2070), and far future (2071–2100) to be 64.19%, 47.33%, and 70.59%, respectively. Finally, based on the obtained results, it was concluded that the CanESM5 model produces better results than the ACCESS-CM2 and BCC-CSM2-MR models. As a result, the streamflow evaluated with this model can be used for the PMB’s future water management strategies. Thus, this study’s findings may be helpful in developing water management strategies and preventing the pessimistic effect of CC in the PMB.
    Type of Medium: Online Resource
    ISSN: 2073-4441
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2521238-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Water, MDPI AG, Vol. 15, No. 19 ( 2023-09-28), p. 3421-
    Abstract: Assessing the impacts of climate change and land use/land cover changes on water resources within a catchment is essential because it helps us understand how these dynamic factors affect the quantity, quality, and availability of freshwater. This knowledge is crucial for making informed decisions about water management, conservation, and adaptation strategies, especially in regions facing increasing environmental uncertainties and challenges to water resource sustainability. In Pakistan’s Kunhar River Basin (KRB), this investigation explores the potential effects of shifting land use/land cover (LULC), and climate on stream flows. The SWAT (Soil and Water Assessment Tool), a semi-distributed hydrological model, and the most recent Coupled Model Intercomparison Project phase 6 (CMIP6) dataset from multiple global climate models (GCMs) were used to evaluate these effects. The temperature and precipitation data were downscaled using the CMhyd software; for both shared socioeconomic pathways (SSP2 and SSP5), the top-performing GCM out of four was required to produce downscaled precipitation and temperature predictions while taking future land use characteristics into account. The output from the chosen GCM indicated that by the conclusion of the 21st century, relative to the reference period (1985–2014), the study area’s average monthly precipitation, highest temperature, and lowest temperature will be increasing. Precipitation is anticipated to increase between 2015 and 2100 by 20.5% and 29.1% according to the SSP2 and SSP5 scenarios, respectively. This study’s findings, which emphasize the need for project planners and managers taking into account the effects of climate and land cover changes in their management techniques, show that climate change can have a significant impact on the changing seasons of flows in the Kunhar River basin.
    Type of Medium: Online Resource
    ISSN: 2073-4441
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2521238-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Land, MDPI AG, Vol. 12, No. 1 ( 2022-12-30), p. 116-
    Abstract: Globally, soil erosion is a significant problem contributing to nutrient loss, water quality degradation, and sand accumulation in water bodies. Currently, various climate factors are affecting the natural resources entire worldwide. Agricultural intensification, soil degradation, and some other human impacts all contribute to soil erosion, which is a significant issue. Management and conservation efforts in a watershed can benefit from a soil erosion study. Modeling can establish a scientific and accurate method to calculate sediment output and soil erosion below a variety of circumstances. The measured soil loss tolerance was compared to the risk of soil erosion (T value).In this study, GIS and remote sensing techniques have been integrated with the Revised Universal Soil Loss Equation (RUSLE) model to estimate soil loss in the Mayurakshi river basin of eastern India. To determine soil erosion-prone areas, rainfall, land use, and land cover maps, as well as a digital elevation model (DEM), were used as input. The annual soil loss in the basin area is estimated to be 4,629,714.8 tons. Accordingly, the study basin was categorized into five soil loss severity classes: very low (40.92%), low (49%), moderate (6.5%), high (2.4%) and very high (1.18%) risk classes. Soil erosion rates ranged from very slight to slight throughout the majority of the region. The section of the basin’s lower plain has been discovered to be least affected by soil loss. The results of study area can be helpful to conservation of soil management practices and watershed development program in the basin area.
    Type of Medium: Online Resource
    ISSN: 2073-445X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2682955-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Land, MDPI AG, Vol. 11, No. 11 ( 2022-11-14), p. 2040-
    Abstract: Climate change has caused droughts to increase in frequency and severity worldwide, which has attracted scientists to create drought prediction models to mitigate the impacts of droughts. One of the most important challenges in addressing droughts is developing accurate models to predict their discrete characteristics, i.e., occurrence, duration, and severity. The current research examined the performance of several different machine learning models, including Artificial Neural Network (ANN) and M5P Tree in forecasting the most widely used drought measure, the Standardized Precipitation Index (SPI), at both discrete time scales (SPI 3, SPI 6). The drought model was developed utilizing rainfall data from two stations in India (i.e., Angangaon and Dahalewadi) for 2000–2019, wherein the first 14 years are employed for model training, while the remaining six years are employed for model validation. The subset regression analysis was performed on 12 different input combinations to choose the best input combination for SPI 3 and SPI 6. The sensitivity analysis was carried out on the given best input combination to find the most effective parameter for forecasting. The performance of all the developed models for ANN (4, 5), ANN (5, 6), ANN (6, 7), and M5P models was assessed through the different statistical indicators, namely, MAE, RMSE, RAE, RRSE, and r. The results revealed that SPI (t-1) is the most sensitive parameters with highest values of β = 0.916, 1.017, respectively, for SPI-3 and SPI-6 prediction at both stations on the best input combinations i.e., combination 7 (SPI-1/SPI-3/SPI-4/SPI-5/SPI-8/SPI-9/SPI-11) and combination 4 (SPI-1/SPI-2/SPI-6/SPI-7) based on the higher values of R2 and Adjusted R2 while the lowest values of MSE values. It is clear from the performance of models that the M5P model has higher r values and lesser RMSE values as compared to ANN (4, 5), ANN (5, 6), and ANN (6, 7) models. Therefore, the M5P model was superior to other developed models at both stations.
    Type of Medium: Online Resource
    ISSN: 2073-445X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2682955-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Water, MDPI AG, Vol. 15, No. 19 ( 2023-09-30), p. 3464-
    Abstract: The water seepage zone affects dryland salinity, soil sodicity, land degradation, waterlogging, and rainfall pollution. The priority in terms of the remediation measures was determining the cause of the seepages. Nine water and six soil samples were collected from the Al Tayseer area of the Wadi Bani Malik, Jeddah, Saudi Arabia (SA). The water samples were analyzed for major and toxic metals. For the soil samples, granulometric analysis and infiltration rate analysis were performed. The total dissolved solids (TDS) in water seepages ranged from 1880 to 54,499, whereas boron (B) and iron (Fe) values ranged from 1.9 to 38 mg/L and 0.02 and 0.47 mg/L, respectively. These concentrations were the same for the aquifer in Lake Al Misk, confirming that groundwater infiltration from the lake area was the main reason for the water seepage. The concentrations of silica (Si), aluminum (Al), cobalt (Co), nickel (Ni), zinc (Zn), arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), and lead (Pb) were low, indicating that there was no contamination. The nitrate (NO32−) value ranged from 2.2 to 35 mg/L, indicating agricultural wastewater contribution. According to the granulometric examination, most sediment was sand, followed by gravel, with few fine-grain particles. The infiltration rate ranged from 85 to 864 cm/d, indicating significant leakage. The percentage of ferrugination, ferromagnesian, OH-bearing, and carbonate (CO₃2−) minerals is determined by the 4/2, 5/6, and 6/7 band ratios.
    Type of Medium: Online Resource
    ISSN: 2073-4441
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2521238-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Sustainability, MDPI AG, Vol. 15, No. 12 ( 2023-06-13), p. 9494-
    Abstract: Wetland ecosystems are essential for maintaining biological diversity and are significant elements of the global landscape. However, the biodiversity of wetlands has been significantly reduced by more than 50% worldwide due to the rapid expansion of urban areas and other human activities. The aforementioned factors have resulted in drastic antagonistic effects on species composition, particularly aquatic avifauna. The decline in wetland avifauna, which can be attributed to changes in water quality that impact aquatic habitats, is a major concern. In this study, we evaluated the impact of physicochemical parameters on aquatic avifauna in India’s first Conservation Reserve, a Ramsar site and an Important Bird Area. Water samples were collected on a monthly basis across nine different sites and various parameters, such as temperature, electrical conductivity, pH, biological oxygen demand, dissolved oxygen, total dissolved solids and salinity, were analyzed for pre-monsoon and post-monsoon seasons, while point count surveys were conducted to assess species richness and the density of waterbirds. Our findings show a positive correlation of species density with water temperature (r = 0.57), total dissolved solids (r = 0.56) and dissolved oxygen (r = 0.6) for pre-monsoon season and a negative correlation for dissolved oxygen (r = −0.62) and biological oxygen demand (r = −0.69) for post-monsoon season. We suggest that a synergistic effect of pH, salinity, biological oxygen demand and total dissolved solids may affect aquatic bird populations in Asan Conservation Reserve. Poor water quality was observed in a few sampling sites, which may negatively affect the number and density of waterbirds present. The findings of this study emphasize the importance of water quality in wetland conservation, particularly for aquatic avifauna.
    Type of Medium: Online Resource
    ISSN: 2071-1050
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2518383-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Sustainability, MDPI AG, Vol. 15, No. 9 ( 2023-05-05), p. 7593-
    Abstract: The present study was carried out using artificial neural network (ANN) model for predicting the sodium hazardness, i.e., sodium adsorption ratio (SAR), percent sodium (%Na) residual, Kelly’s ratio (KR), and residual sodium carbonate (RSC) in the groundwater of the Pratapgarh district of Southern Rajasthan, India. This study focuses on verifying the suitability of water for irrigational purpose, wherein more groundwater decline coupled with water quality problems compared to the other areas are observed. The southern part of the Rajasthan State is more populated as compared to the rest of the parts. The southern part of the Rajasthan is more populated as compared to the rest of the Rajasthan, which leads to the industrialization, urbanization, and evolutionary changes in the agricultural production in the southern region. Therefore, it is necessary to propose innovative methods for analyzing and predicting the water quality (WQ) for agricultural use. The study aims to develop an optimized artificial neural network (ANN) model to predict the sodium hazardness of groundwater for irrigation purposes. The ANN model was developed using ‘nntool’ in MATLAB software. The ANN model was trained and validated for ten years (2010–2020) of water quality data. An L-M 3-layer back propagation technique was adopted in ANN architecture to develop a reliable and accurate model for predicting the suitability of groundwater for irrigation. Furthermore, statistical performance indicators, such as RMSE, IA, R, and MBE, were used to check the consistency of ANN prediction results. The developed ANN model, i.e., ANN4 (3-12-1), ANN4 (4-15-1), ANN1 (4-5-1), and ANN4 (3-12-1), were found best suited for SAR, %Na, RSC, and KR water quality indicators for the Pratapgarh district. The performance analysis of the developed model (3-12-1) led to a correlation coefficient = 1, IA = 1, RMS = 0.14, and MBE = 0.0050. Hence, the proposed model provides a satisfactory match to the empirically generated datasets in the observed wells. This development of water quality modeling using an ANN model may help to useful for the planning of sustainable management and groundwater resources with crop suitability plans as per water quality.
    Type of Medium: Online Resource
    ISSN: 2071-1050
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2518383-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...