GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (2)
Material
Publisher
  • MDPI AG  (2)
Language
Years
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  Construction Materials Vol. 3, No. 2 ( 2023-06-01), p. 233-243
    In: Construction Materials, MDPI AG, Vol. 3, No. 2 ( 2023-06-01), p. 233-243
    Abstract: Alkali–silica reactivity (ASR) is one of multiple reactions responsible for premature loss in concrete infrastructure service life. ASR results in the formation of expansive, white-colored gel-like material which results in internal stresses within hardened concrete. ASR-induced stresses result in concrete cracking, spalling, and increased reinforcement steel corrosion rates. The main objective of this research is to improve the conditions of concrete infrastructure projects by mitigating ASR’s damaging effect. The expansion of accelerated mortar bars poured using fine aggregates collected from different sources is measured versus time to evaluate the aggregates’ reactivity. Different percentages of supplementary cementitious materials (SCMs), including class C fly ash and microsilica, were used in remixing mortar bars to evaluate the efficiency of different types of SCMs in mitigating mortar bar expansion. The research findings showed that SCMs can mitigate ASR, thus decreasing mortar bar expansion. The efficiency of SCMs in ASR mitigation is highly dependent on the incorporated SCM percentage and particle fineness. Silica fume, having the smallest particle size, displayed higher rates of ASR mitigation, followed by fly ash. The outcomes of this research will assist design engineers in avoiding future losses due to ASR cracking in concrete infrastructure projects, and reduce the excessive need for maintenance, repair, and replacement activities.
    Type of Medium: Online Resource
    ISSN: 2673-7108
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: CivilEng, MDPI AG, Vol. 4, No. 2 ( 2023-05-26), p. 596-617
    Abstract: Magneto-rheological dampers (MR-Dampers) are increasingly being used in construction applications to reduce the dynamic response of structures to seismic activities or severe wind loading. Sensors attached to the structure will signal the computer to supply the dampers with an electric charge that transfers the MR fluid to a near-solid material with different physical and mechanical properties (viscoelastic behavior). Control algorithms govern the fluid to near-solid conversion, which controls the behavior of the damper and the performance of the structure under the seismic or wind loading event. The successful optimization of control parameters minimizes the overall structural response to dynamic forces. The main objective of this research is to change the output behavior of specific floors within a building subjected to seismic excitation by optimizing the MR-Damper control parameters to impact the behavior of a specific floor or number of floors within the building. The adjustment of control parameters to attain this objective was validated in multiple case studies throughout this research. The successful implementation of the research outcome will result in optimized MR-damper design to meet the performance-based criteria of building projects.
    Type of Medium: Online Resource
    ISSN: 2673-4109
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...