GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 5910–5931, doi:10.1002/2015JC010989.
    Description: Five quantitative methodologies (metrics) that may be used to assess the skill of sea ice models against a control field are analyzed. The methodologies are Absolute Deviation, Root-Mean-Square Deviation, Mean Displacement, Hausdorff Distance, and Modified Hausdorff Distance. The methodologies are employed to quantify similarity between spatial distribution of the simulated and control scalar fields providing measures of model performance. To analyze their response to dissimilarities in two-dimensional fields (contours), the metrics undergo sensitivity tests (scale, rotation, translation, and noise). Furthermore, in order to assess their ability to quantify resemblance of three-dimensional fields, the metrics are subjected to sensitivity tests where tested fields have continuous random spatial patterns inside the contours. The Modified Hausdorff Distance approach demonstrates the best response to tested differences, with the other methods limited by weak responses to scale and translation. Both Hausdorff Distance and Modified Hausdorff Distance metrics are robust to noise, as opposed to the other methods. The metrics are then employed in realistic cases that validate sea ice concentration fields from numerical models and sea ice mean outlook against control data and observations. The Modified Hausdorff Distance method again exhibits high skill in quantifying similarity between both two-dimensional (ice contour) and three-dimensional (ice concentration) sea ice fields. The study demonstrates that the Modified Hausdorff Distance is a mathematically tractable and efficient method for model skill assessment and comparison providing effective and objective evaluation of both two-dimensional and three-dimensional sea ice characteristics across data sets.
    Description: U.S. National Science Foundation (NSF) Grant Number: PLR-0804017, NASA JPL OVWST, Bureau of Ocean Energy Management (BOEM), FSU Grant Number: M12PC00003, NSF Grant Numbers: projects PLR-0804010 , PLR-1313614 , PLR-1203720, BP/The Gulf of Mexico Research Initiative Grant Number: SA12-12, GoMRI-008, DoD High Performance Computing Modernization Program
    Keywords: Sea ice model ; Sea ice model validation ; Model skill assessment
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 121 (2016): 877–907, doi:10.1002/2015JC011290.
    Description: Accelerating since the early 1990s, the Greenland Ice Sheet mass loss exerts a significant impact on thermohaline processes in the sub-Arctic seas. Surplus freshwater discharge from Greenland since the 1990s, comparable in volume to the amount of freshwater present during the Great Salinity Anomaly events, could spread and accumulate in the sub-Arctic seas, influencing convective processes there. However, hydrographic observations in the Labrador Sea and the Nordic Seas, where the Greenland freshening signal might be expected to propagate, do not show a persistent freshening in the upper ocean during last two decades. This raises the question of where the surplus Greenland freshwater has propagated. In order to investigate the fate, pathways, and propagation rate of Greenland meltwater in the sub-Arctic seas, several numerical experiments using a passive tracer to track the spreading of Greenland freshwater have been conducted as a part of the Forum for Arctic Ocean Modeling and Observational Synthesis effort. The models show that Greenland freshwater propagates and accumulates in the sub-Arctic seas, although the models disagree on the amount of tracer propagation into the convective regions. Results highlight the differences in simulated physical mechanisms at play in different models and underscore the continued importance of intercomparison studies. It is estimated that surplus Greenland freshwater flux should have caused a salinity decrease by 0.06–0.08 in the sub-Arctic seas in contradiction with the recently observed salinification (by 0.15–0.2) in the region. It is surmised that the increasing salinity of Atlantic Water has obscured the freshening signal.
    Description: NSERC. Grant Numbers RGPIN 227438-09, RGPIN 04357 and RGPCC 433898; RFBR. Grant Number 13-05-00480, 14-05-00730, and 15-05-02457; NSF Grant Number: PLR-0804010, PLR-1313614, and PLR-1203720
    Description: 2016-07-25
    Keywords: Greenland Ice Sheet melting ; Greenland freshwater ; Thermohaline circulation ; Nordic Seas ; Sub-Arctic seas ; Baffin Bay ; Labrador Sea
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...