GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Ocean dynamics 37 (1984), S. 147-155 
    ISSN: 1616-7228
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Description / Table of Contents: Zusammenfassung Zwei lange Nord-Süd orientierte CTD-Schnitte, die von dem FS “Meteor” im subtropischen Ostatlantik gewonnen wurden, werden benutzt, um die potentielle Vorticity und den Volumentransport zu berechnen. Die Ergebnisse werden mit der potentiellen Vorticity des westlichen Nordatlantiks und mit dem Transportfeld aus mittleren Profilen des Ostatlantiks verglichen. Die Verteilung der potentiellen Vorticity steht in guter Übereinstimmung mit Datensätzen aus dem westlichen und östlichen Nordatlantik verschiedener Jahre und zeigt deutlich den Einfluß des subtropischen Wirbels. Der Volumentransport aus den CTD-Schnitten ist vergleichbar mit den mittleren Transporten im Bereich des subtropischen Wirbels und weist Abweichungen nördlich und südlich des Wirbels auf. Die starken Strömungen des Wirbels erreichen Geschwindigkeiten von 7 cm s−1 an der Oberfläche, und Geschwindigkeiten von mehr als 1 cm s−1 reichen bis in 940 m Tiefe.
    Abstract: Résumé Deux longs profils Nord-Sud de mesures CTD effectués par le navire RV «Meteor» au cours de la campagne 60 dans la partie subtropicale de l'Océan Atlantique Oriental Nord ont permis le calcul de la vorticité potentielle et du transport de masse. Notre répartition de la vorticité potentielle est en conformité avec l'ensemble des résultats de plusieurs années de mesures dans l'Océan Atlantique Nord Occidental et Oriental et montre clairement l'influence du tourbillon subtropical. Le transport de masse évalué à partir des profils CTD correspond bien au transport moyen dans le tourbillon subtropical et montre les écarts au Nord et au Sud du tourbillon. La vitesse du courant tourbillonnaire va de 7 cm s−1 en surface à moins de 1 cm s−1 au-delà de 940 m d'immersion.
    Notes: Summary Two long north-south oriented CTD sections taken on RV “Meteor” cruise 60 in the eastern subtropical North Atlantic are used to compute potential vorticity and volume transport. Our distribution of potential vorticity is in good agreement with data sets from different years in the western and eastern North Atlantic and shows the influence of the subtropical gyre distinctly. The volume transport of the CTD sections corresponds well with mean transport in the subtropical gyre and shows deviations north and south of the gyre. The gyre current velocities range from 7 cm s−1 at the surface to less than 1 cm s−1 below 940 m depth.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 29 (2015): 793-811, doi:10.1002/2014GB005001.
    Description: Mesoscale eddies in Oxygen Minimum Zones (OMZs) have been identified as important fixed nitrogen (N) loss hotspots that may significantly impact both the global rate of N-loss as well as the ocean's N isotope budget. They also represent “natural tracer experiments” with intensified biogeochemical signals that can be exploited to understand the large-scale processes that control N-loss and associated isotope effects (ε; the ‰ deviation from 1 in the ratio of reaction rate constants for the light versus heavy isotopologues). We observed large ranges in the concentrations and N and O isotopic compositions of nitrate (NO3−), nitrite (NO2−), and biogenic N2 associated with an anticyclonic mode-water eddy in the Peru OMZ during two cruises in November and December 2012. In the eddy's center where NO3− was nearly exhausted, we measured the highest δ15N values for both NO3− and NO2− (up to ~70‰ and 50‰) ever reported for an OMZ. Correspondingly, N deficit and biogenic N2-N concentrations were also the highest near the eddy's center (up to ~40 µmol L−1). δ15N-N2 also varied with biogenic N2 production, following kinetic isotopic fractionation during NO2− reduction to N2 and, for the first time, provided an independent assessment of N isotope fractionation during OMZ N-loss. We found apparent variable ε for NO3− reduction (up to ~30‰ in the presence of NO2−). However, the overall ε for N-loss was calculated to be only ~13–14‰ (as compared to canonical values of ~20–30‰) assuming a closed system and only slightly higher assuming an open system (16–19‰). Our results were similar whether calculated from the disappearance of DIN (NO3− + NO2−) or from the appearance of N2 and changes in isotopic composition. Further, we calculated the separate ε values for NO3− reduction to NO2− and NO2− reduction to N2 of ~16–21‰ and ~12‰, respectively, when the effect of NO2− oxidation could be removed. These results, together with the relationship between N and O of NO3− isotopes and the difference in δ15N between NO3− and NO2−, confirm a role for NO2− oxidation in increasing the apparent ε associated with NO3− reduction. The lower ε for N-loss calculated in this study could help reconcile the current imbalance in the global N budget if representative of global OMZ N-loss.
    Description: This work was supported by the Deutsche Forschungsgemeinschaft- project SFB-754 (www.sfb754.de), SOPRAN II (grant FKZ 03F0611A; www.sopran.pangaea.de), NSF grants OCE 0851092 and OCE 1154741 to M.A.A., and a NSERC Postdoctoral Fellowship to A.B.
    Description: 2015-12-06
    Keywords: Mesoscale eddy ; Isotope effects ; N-loss
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Ocean 119 (2014): 1068–1083, doi:10.1002/2013JC009470.
    Description: In the tropical eastern South Pacific the Stratus Ocean Reference Station (ORS) (∼20°S, 85.5°W) is located in the transition zone between the oxygen minimum zone (OMZ) and the well-oxygenated subtropical gyre. In February/March 2012, extremely anomalous water mass properties were observed in the thermocline at the Stratus ORS. The available eddy oxygen anomaly was −10.5 × 1016 µmol. This anomalous water was contained in an anticyclonic mode-water eddy crossing the mooring site. This eddy was absorbed at that time by an anticyclonic feature located south of the Stratus mooring. This was the largest water property anomaly observed at the mooring during the 13.5 month deployment period. The sea surface height anomaly (SSHA) of the strong mode-water eddy in February/March 2012 was weak, and while the lowest and highest SSHA were related to weak eddies, SSHA is found not to be sufficient to specify the eddy strength for subsurface-intensified eddies. Still, the anticyclonic eddy, and its related water mass characteristics, could be tracked backward in time in SSHA satellite data to a formation region in April 2011 off the Chilean coast. The resulting mean westward propagation velocity was 5.5 cm s−1. This extremely long-lived eddy carried the water characteristics from the near-coastal Chilean water to the open ocean. The water mass stayed isolated during the 11 month travel time due to high rotational speed of about 20 cm s−1 leading to almost zero oxygen in the subsurface layer of the anticyclonic mode-water eddy with indications of high primary production just below the mixed layer.
    Description: Financial support was received through Woods Hole Oceanographic Institution (R.A.W. and S.B.) and the GEOMAR (L.S. and R.C). The Stratus Ocean Reference Station is supported by the National Oceanic and Atmospheric Administration’s (NOAA) Climate Observation Program (NA09OAR4320129). This work is a contribution of the DFG-supported project SFB754 (http://www.sfb754.de) which is supported by the Deutsche Forschungsgemeinschaft.
    Description: 2014-08-12
    Keywords: Anticyclonic eddy ; Deoxygenation ; Stratus mooring ; Oxygen anomaly
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Springer
    In:  In: The South Atlantic: Present and Past Circulation. , ed. by Wefer, G., Berger, W. H., Siedler, G. and Webb, D. J. Springer, Berlin, Heidelberg, pp. 261-271. ISBN 3-540-62079-6
    Publication Date: 2020-04-02
    Type: Book chapter , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...