GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-05-31
    Description: The abundance and diversity of microorganisms on the surface of the tropical green macroalga Caulerpa racemosa var. turbinata and the effect of algal surface and waterborne compounds on fouling organisms were investigated both in laboratory and field experiments. As shown via electron microscopic enumeration, the abundance of epibiotic bacteria and diatoms on algal frond surfaces was not significantly different from the reference biofilms harvested from stones in the C. racemosa habitat. The analysis of Terminal Restriction Fragment Length Polymorphism of DNA from algal surface-associated bacterial communities revealed that despite a similar abundance of these bacteria, the community profile on algal frond surfaces differed significantly from that of inanimate, undefended substrates. These results suggest that the alga regulate the occurrence of certain bacterial ribotypes. This result was in accordance with the fact that different bacterial communities formed on the artificial substrata (i.e. Petri dishes) placed in the C. racemosa habitat and alga-free control sites. Neither C. racemosa conditioned seawater (CCW) nor hexane surface extracts affected the growth of bacterial isolates from biofilms. However, only CCW exhibited a toxic effect on the larvae of the fouling polychaete Hydroides elegans, and evoked abnormal larval development in a concentration-dependent fashion. At sublethal concentrations, the 〈1 kD fraction of CCW inhibited the larval settlement of H. elegans and the bryozoan Bugula neritina. Caulerpenyne, the prominent bioactive metabolite in the genus Caulerpa, was not detected in CCW by chromatographic procedures. Our data suggest that waterborne compounds other than caulerpenyne are involved in the chemical defense of the alga C. racemosa.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-05-31
    Description: Microbial communities of the sponges Callyspongia sp. from Hong Kong and Callyspongia plicifera (Porifera: Demospongia) from the Bahamas were compared with each other and with those from reference substrata using a terminal restriction fragment length polymorphism (T-RFLP) analysis. The least number of bacterial ribotypes and bacterial isolates were retrieved from Bahamas reference and sponge surfaces, while the bacterial communities from Hong Kong Callyspongia sp. and reference surfaces were more diverse. Microbial communities from the 2 sponges were different from each other and from reference substrata. Gas chromatographic–mass spectrometric (GC-MS) analysis of dichloromethane extracts revealed that more than 60% of the compounds were similar in the 2 species Callyspongia sp. and C. plicifera, compared to the compounds of Halichondria spp. At tissue level (TL) concentrations, both sponge extracts predominantly inhibited the growth of bacteria from reference substrata. Multifactor ANOVA revealed that the source of bacteria (sponge surface, interior, or reference substrata), the geographic location of isolates (Hong Kong or the Bahamas), thesponge extract (from Callyspongia sp. or from C. plicifera), and combinations of these factors contributed significant effects in disc diffusion assay experiments. Sponge extracts at both TL concentrations and 10× dilutions were toxic to larvae of the polychaete Hydroides elegans and the barnacle Balanus amphitrite. Our results suggest that the 2 congeneric sponges Callyspongia spp. from different biogeographic regions have different bacterial associates, while producing relatively similar secondary metabolites. It remains to be explored whether differences in sponge-associated bacterial communities will also hold for other congeneric sponge species from different regions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...