GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Kiel : [GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel]
    Keywords: Forschungsbericht ; Pleistozän ; Paläoklima ; Modell ; Simulation ; Meer ; Biogeochemie
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (13 Seiten, 2,37 MB) , Diagramme
    Language: German
    Note: Förderkennzeichen BMBF 01LP1512A+B , Verbundnummer 01162224 , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: Effects of CO2 concentration on elemental composition of the coccolithophore Emiliania huxleyi were studied in phosphorus-limited, continuous cultures that were acclimated to experimental conditions for 30 d prior to the first sampling. We determined phytoplankton and bacterial cell numbers, nutrients, particulate components like organic carbon (POC), inorganic carbon (PIC), nitrogen (PN), organic phosphorus (POP), transparent exopolymer particles (TEP), as well as dissolved organic carbon (DOC) and nitrogen (DON), in addition to carbonate system parameters at CO2 levels of 180, 380 and 750 µatm. No significant difference between treatments was observed for any of the measured variables during repeated sampling over a 14 d period. We considered several factors that might lead to these results, i.e. light, nutrients, carbon overconsumption and transient versus steady-state growth. We suggest that the absence of a clear CO2 effect during this study does not necessarily imply the absence of an effect in nature. Instead, the sensitivity of the cell towards environmental stressors such as CO2 may vary depending on whether growth conditions are transient or sufficiently stable to allow for optimal allocation of energy and resources. We tested this idea on previously published data sets where PIC and POC divided by the corresponding cell abundance of E. huxleyi at various pCO2 levels and growth rates were available.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 182 . pp. 69-76.
    Publication Date: 2018-05-08
    Description: Sinking velocities of more than 300 Nitzschia closterium aggregates were determined during roller table incubation using digital image analysis. To examine the influence of transparent exopolymer particles (TEP) on aggregate settling speed, 3 experiments with different ratios of TEP to cell volume concentration were conducted. The results showed that, for N. closterium aggregates without TEP, sinking velocity (U) was significantly related to the equivalent spherical diameter (ESD) of the aggregates, yielding U (cm s-1) = 1.89 (ESD, cm)0.55. The higher was the specific TEP content of an aggregate, the lower was the sinking velocity and the less pronounced was the size versus velocity relationship. Excess densities (Δρ) of aggregates were derived from velocity measurements and 3-dimensional fractal dimensions (D3) of aggregates were calculated from scaling properties of Δρ. Values for D3 never exceeded 2 and fit well to values of the 2-dimensional fractal dimension (D2) attained from image analysis.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: The seasonal variation in concentration of transparent exopolymer particles (TEPs), particulate organic carbon (POC) and particulate organic nitrogen (PON) were investigated together with floc size and the concentration of suspended particulate matter (SPM) along the cross-shore gradient, from the high turbid nearshore toward the low-turbid offshore waters in the Southern Bight of the North Sea. Our data demonstrate that biophysical flocculation cannot be explained by these heterogeneous parameters, but requires a distinction between a more reactive labile (“fresh”) and a less reactive refractory (“mineral-associated”) fraction. Based on all data, we separated the labile and mineral-associated POC, PON, and TEP using a semi-empirical model approach. The model's estimates of fresh and mineral-associated organic matter (OM) show that great parts of the POC, PON, and TEP are associated with suspended minerals, which are present in the water column throughout the year, whereas the occurrence of fresh TEP, POC, and PON is restricted to spring and summer months. In spite of a constantly high abundance of total TEP throughout the entire year, it is its fresh fraction that promotes the formation of larger and faster sinking biomineral flocs, thereby contributing to reducing the SPM concentration in the water column over spring and summer. Our results show that the different components of the SPM, such as minerals, extracellular OM and living organisms, form an integrated dynamic system with direct interactions and feedback controls.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Understanding how marine microbial food webs and their ecosystem functions are changing is crucial for projections of the future ocean. Often, simplified food web models are employed and their solutions are only evaluated against available observations of plankton biomass. With such an approach, it remains unclear how different underlying trophic interactions affect interpretations of plankton dynamics and functioning. Here, we quantitatively compare four hypothetical food webs to data from an existing mesocosm experiment using a refined version of the Minimum Microbial Food Web model. Food web representations range from separated food chains to complex food webs featuring additional trophic links including intraguild predation (IGP). Optimization against observations and taking into account model complexity ensures a fair comparison of the different food webs. Although the different optimized model food webs capture the observations similarly well, projected ecosystem functions differ depending on the underlying food web structure and the presence or absence of IGP. Mesh-like food webs dominated by the microbial loop yield higher recycling and net primary production (NPP) than models dominated by the classical diatom-copepod food chain. A high degree of microzooplankton IGP increases NPP and organic matter recycling, but decreases trophic transfer efficiency (TTE) to copepods. Copepod production, the trophic role of copepods, and TTE are more sensitive to initial biomass changes in chain-like than in complex food webs. Measurements resolving trophic interactions, in particular those quantifying IGP, remain essential to reduce model uncertainty and allow sound conclusions for ecosystem functioning in plankton ecosystems.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...