GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: © IOP Publishing, 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Environmental Research Letters 7 (2012): 044020, doi:10.1088/1748-9326/7/4/044020.
    Description: Chemical nitrogen (N) fertilizer has long been used to help meet the increasing food demands in China, the top N fertilizer consumer in the world. Growing concerns have been raised on the impacts of N fertilizer uses on food security and climate change, which is lack of quantification. Here we use a carbon–nitrogen (C–N) coupled ecosystem model, to quantify the food benefit and climate consequence of agronomic N addition in China over the six decades from 1949 to 2008. Results show that N fertilizer-induced crop yield and soil C sequestration had reached their peaks, while nitrous oxide (N2O) emission continued rising as N was added. Since the early 2000s, stimulation of excessive N fertilizer uses to global climate warming through N2O emission was estimated to outweigh their climate benefit in increasing CO2 uptake. The net warming effect of N fertilizer uses, mainly centered in the North China Plain and the middle and lower reaches of Yangtze River Basin, with N2O emission completely counteracting or even exceeding, by more than a factor of 2, the CO2 sink. If we reduced the current N fertilizer level by 60% in 'over-fertilized' areas, N2O emission would substantially decrease without significantly influencing crop yield and soil C sequestration.
    Description: This study has been supported by NASA IDS Program (NNG04GM39C), NASA LCLUC Program (NNX08AL73G), and the National Basic Research Program of China (2010CB950900) and (2010CB950604).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...