GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Hindawi Limited  (2)
  • 1
    In: Journal of Tissue Engineering and Regenerative Medicine, Hindawi Limited, Vol. 2023 ( 2023-3-9), p. 1-9
    Abstract: Endothelial progenitor cell (EPC) therapy has been successfully used in orthopaedic preclinical models to heal bone defects. However, no previous studies have investigated the dose-response relationship between EPC therapy and bone healing. This study aimed to assess the effect of different EPC doses on bone healing in a rat model to define an optimal dose. Five-millimeter segmental defects were created in the right femora of Fischer 344 rats, followed by stabilization with a miniplate and screws. Rats were assigned to one of six groups (control, 0.1 M, 0.5 M, 1.0 M, 2.0 M, and 4.0 M; n = 6), receiving 0, 1 × 105, 5 × 105, 1 × 106, 2 × 106, and 4 × 106 EPCs, respectively, delivered into the defect on a gelatin scaffold. Radiographs were taken every two weeks until the animals were euthanized 10 weeks after surgery. The operated femora were then evaluated using micro-computed tomography and biomechanical testing. Overall, the groups that received higher doses of EPCs (0.5 M, 1.0 M, 2.0 M, and 4.0 M) reached better outcomes. At 10 weeks, full radiographic union was observed in 67% of animals in the 0.5 M group, 83% of animals in the 1.0 M group, and 100% of the animals in the 2.0 M and 4.0 M groups, but none in the control and 0.1 M groups. The 2.0 M group also displayed the strongest biomechanical properties, which significantly improved relative to the control and 0.1 M groups. In summary, this study defined a dose-response relationship between EPC therapy and bone healing, with 2 × 106 EPCs being the optimal dose in this model. Our findings emphasize the importance of dosing considerations in the application of cell therapies aimed at tissue regeneration and will help guide future investigations and clinical translation of EPC therapy.
    Type of Medium: Online Resource
    ISSN: 1932-7005
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2023
    detail.hit.zdb_id: 2316155-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Stem Cells International, Hindawi Limited, Vol. 2017 ( 2017), p. 1-10
    Abstract: The repair of segmental bone defects remains a significant challenge for orthopaedic surgeons. Endothelial progenitor cells (EPCs) have successfully promoted the repair of acute defects in animal models; however, the ability of EPCs to induce the repair of chronic nonhealing defects, such as those often encountered clinically, has not been investigated. Therefore, the purpose of this study was to investigate the ability of EPCs delivered in delayed fashion to induce the repair of nonhealing defects in a clinically relevant model. In order to simulate delayed treatment, 5 mm segmental defects in Fischer 344 rat femora were treated with bone marrow-derived EPCs on a Gelfoam scaffold at 3 weeks post creation of the defect. At ten weeks posttreatment, 100% of EPC-treated defects achieved union, whereas complete union was only achieved in 37.5% of defects treated with Gelfoam alone. Furthermore, significant increases in ultimate torque ( p = 0.022 ) and torsional stiffness ( p = 0.003 ) were found in EPC-treated defects compared to controls. Critically, no differences in outcomes were observed between acute and delayed EPC treatments. These results suggest that EPCs can enhance bone healing when applied in an acute or delayed fashion and that their use may represent a clinically translatable therapy for bone healing in humans.
    Type of Medium: Online Resource
    ISSN: 1687-966X , 1687-9678
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2017
    detail.hit.zdb_id: 2573856-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...