GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-07-01
    Description: Coupled Model Intercomparison Project Phase 6 (CMIP6) data sets: HighResMIP HR simulations. These data include all datasets published for 'CMIP6.HighResMIP.AWI.AWI-CM-1-1-HR' according to the Data Reference Syntax defined as 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The model used in climate research named AWI-CM 1.1 HR, released in 2018, includes the components: atmos: ECHAM6.3.04p1 (T127L95 native atmosphere T127 gaussian grid; 384 x 192 longitude/latitude; 95 levels; top level 80 km), land: JSBACH 3.20, ocean: FESOM 1.4 (unstructured grid in the horizontal with 1306775 wet nodes; 46 levels; top grid cell 0-5 m), seaIce: FESOM 1.4. The model was run by the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany (AWI) in native nominal resolutions: atmos: 100 km, land: 100 km, ocean: 25 km, seaIce: 25 km. Project: These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions, and the results will undoubtedly be relied on by authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated at a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. - Project website: https://pcmdi.llnl.gov/CMIP6.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Miscellaneous , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-07-01
    Description: Coupled Model Intercomparison Project Phase 6 (CMIP6) data sets: DECK (1pctCO2, abrupt-4xCO2, piControl simulations) and CMIP historical simulations. These data include all datasets published for 'CMIP6.CMIP.AWI.AWI-CM-1-1-MR' according to the Data Reference Syntax defined as 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The model used in climate research named AWI-CM 1.1 MR, released in 2018, includes the components: atmos: ECHAM6.3.04p1 (T127L95 native atmosphere T127 gaussian grid; 384 x 192 longitude/latitude; 95 levels; top level 80 km), land: JSBACH 3.20, ocean: FESOM 1.4 (unstructured grid in the horizontal with 830305 wet nodes; 46 levels; top grid cell 0-5 m), seaIce: FESOM 1.4. The model was run by the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany (AWI) in native nominal resolutions: atmos: 100 km, land: 100 km, ocean: 25 km, seaIce: 25 km. Project: These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions, and the results will undoubtedly be relied on by authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated at a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. - Project website: https://pcmdi.llnl.gov/CMIP6.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Miscellaneous , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-07-01
    Description: Coupled Model Intercomparison Project Phase 6 (CMIP6) data sets: HighResMIP LR simulations. These data includes all datasets published for 'CMIP6.HighResMIP.AWI.AWI-CM-1-1-LR' according to the Data Reference Syntax defined as 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The model used in climate research named AWI-CM 1.1 LR, released in 2018, includes the components: atmos: ECHAM6.3.04p1 (T63L47 native atmosphere T63 gaussian grid; 192 x 96 longitude/latitude; 47 levels; top level 80 km), land: JSBACH 3.20, ocean: FESOM 1.4 (unstructured grid in the horizontal with 126859 wet nodes; 46 levels; top grid cell 0-5 m), seaIce: FESOM 1.4. The model was run by the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany (AWI) in native nominal resolutions: atmos: 250 km, land: 250 km, ocean: 50 km, seaIce: 50 km. Project: These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions, and the results will undoubtedly be relied on by authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated at a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. - Project website: https://pcmdi.llnl.gov/CMIP6.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Miscellaneous , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-07-01
    Description: Coupled Model Intercomparison Project Phase 6 (CMIP6) data sets: ScenarioMIP. These data include all datasets published for 'CMIP6.ScenarioMIP.AWI.AWI-CM-1-1-MR' according to the Data Reference Syntax defined as 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The model used in climate research named AWI-CM 1.1 MR, released in 2018, includes the components: atmos: ECHAM6.3.04p1 (T127L95 native atmosphere T127 gaussian grid; 384 x 192 longitude/latitude; 95 levels; top level 80 km), land: JSBACH 3.20, ocean: FESOM 1.4 (unstructured grid in the horizontal with 830305 wet nodes; 46 levels; top grid cell 0-5 m), seaIce: FESOM 1.4. The model was run by the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany (AWI) in native nominal resolutions: atmos: 100 km, land: 100 km, ocean: 25 km, seaIce: 25 km. Project: These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions, and the results will undoubtedly be relied on by authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated at a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. - Project website: https://pcmdi.llnl.gov/CMIP6.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Miscellaneous , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-10-31
    Description: PM2.5 (Particulate Matter 2.5) samples were collected at Mount Heng and analyzed for polycyclic aromatic hydrocarbons (PAHs). During sampling, a sandstorm from northern China struck Mount Heng and resulted in a mean PM2.5 concentration of 150.61 μg/m3, which greatly exceeded the concentration measured under normal conditions (no sandstorm: 58.50 μg/m3). The average mass of PAHs in PM2.5 was 30.70 μg/g, which was much lower than in the non-sandstorm samples (80.80 μg/g). Therefore, the sandstorm increased particle levels but decreased PAH concentrations due to dilution and turbulence. During the sandstorm, the concentrations of 4- and 5-ring PAHs were below their detection limits, and 6-ring PAHs were the most abundant. Under normal conditions, the concentrations of 2-, 3- and 6-ring PAHs were higher, and 4- and 5-ring PAHs were lower relative to the other sampling sites. In general, the PAH contamination was low to medium at Mount Heng. Higher LMW (low molecular weight) concentrations were primarily linked to meteorological conditions, and higher HMW (high molecular weight) concentrations primarily resulted from long-range transport. Analysis of diagnostic ratios indicated that PM2.5 PAHs had been emitted during the combustion of coal, wood or petroleum. The transport characteristics and origins of the PAHs were investigated using backwards Lagrangian particle dispersion modeling. Under normal conditions, the “footprint” retroplumes and potential source contributions of PAHs for the highest and lowest concentrations indicated that local sources had little effect. In contrast, long-range transport played a vital role in the levels of PM2.5 and PAHs in the high-altitude atmosphere.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-08-01
    Description: Land-surface reflectance, estimated from satellite observations through atmospheric corrections, is an essential parameter for further retrieval of various high level land-surface parameters, such as leaf area index (LAI), fraction of absorbed photosynthetically active radiation (FAPAR), and surface albedo. Although great efforts have been made, land-surface reflectance products still contain considerable noise caused by, e.g., cloud or mixed-cloud pixels, which results in temporal and spatial inconsistencies in subsequent downstream products. In this study, a new method is developed to remove the residual clouds in the Moderate Resolution Imaging Spectroradiometer (MODIS) land-surface reflectance product and reconstruct time series of surface reflectance for the red, near infrared (NIR), and shortwave infrared (SWIR) bands. A smoothing method is introduced to calculate upper envelopes of vegetation indices (VIs) from the surface reflectance data and the cloud contaminated reflectance data are identified using the time series VIs and the upper envelopes of the time series VIs. Surface reflectance was then reconstructed according to cloud-free surface reflectance by incorporating the upper envelopes of the time series VIs as constraint conditions. The method was applied to reconstruct time series of surface reflectance from MODIS/TERRA surface reflectance product (MOD09A1). Temporal consistency analysis indicates that the new method can reconstruct temporally-continuous time series of land-surface reflectance. Comparisons with cloud-free MODIS/AQUA surface reflectance product (MYD09A1) over the BELMANIP (Benchmark Land Multisite Analysis and Intercomparison of Products) sites in 2003 demonstrate that the new method provides better performance for the red band (R2 = 0.8606 and RMSE = 0.0366) and NIR band (R2 = 0.6934 and RMSE = 0.0519), than the time series cloud detection (TSCD) algorithm (R2 = 0.5811 and RMSE = 0.0649; and R2 = 0.5005 and RMSE = 0.0675, respectively).
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-05-26
    Description: This study investigates the runoff-sediment relationship (RSR) of the Weihe River, a sandy waterway originating from the Loess Plateau, and considers the potential variations in RSR under an evolving environment. The double mass curve method was used to investigate RSR inflection points at six hydrologic stations located in the Weihe River basin (WRB) spanning the period from 1956 to 2010. Because of its ability to accurately define nonlinear and asymmetric correlations between variables, the Copula function provided the joint probability distributions and revealed the joint probabilities of annual runoff and sediment yield through different periods. The results indicated: (1) The sediment yield and runoff exhibit decreasing trends, which was principally related to human activity such as soil and water conservation measures, water projects and industrial and domestic water use, (2) the RSR inflection points principally occurred around 1983 at the Weijiabu, Xianyang, Huaxian and Zhuangtou stations, whereas they were non-significant at the Linjiacun and Zhangjiashan stations. Changes in RSR are attributed to the irregular effect of human activity reducing the runoff and sediment output; and (3) the joint probability distributions of annual runoff and sediment yield varied under an evolving environment and were characterized by spatial variability, which is more evident in the mainstream areas of the Weihe River than in the tributary regions.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-10-21
    Description: Chinese liquors can be classified according to their flavor types. Accurate identification of Chinese liquor flavors is not always possible through professional sommeliers’ subjective assessment. A novel polymer piezoelectric sensor electric nose (e-nose) can be applied to distinguish Chinese liquors because of its excellent ability in imitating human senses by using sensor arrays and pattern recognition systems. The sensor, based on the quartz crystal microbalance (QCM) principle is comprised of a quartz piezoelectric crystal plate sandwiched between two specific gas-sensitive polymer coatings. Chinese liquors are identified by obtaining the resonance frequency value changes of each sensor using the e-nose. However, the QCM principle failed to completely account for a particular phenomenon: we found that the resonance frequency values fluctuated in the stable state. For better understanding the phenomenon, a 3D Computational Fluid Dynamics (CFD) simulation using the finite volume method is employed to study the influence of the flow-induced forces to the resonance frequency fluctuation of each sensor in the sensor box. A dedicated procedure was developed for modeling the flow of volatile gas from Chinese liquors in a realistic scenario to give reasonably good results with fair accuracy. The flow-induced forces on the sensors are displayed from the perspective of their spatial-temporal and probability density distributions. To evaluate the influence of the fluctuation of the flow-induced forces on each sensor and ensure the serviceability of the e-nose, the standard deviation of resonance frequency value (SDF) and the standard deviation of resultant forces (SDFy) in y-direction (Fy) are compared. Results show that the fluctuations of Fy are bound up with the resonance frequency values fluctuations. To ensure that the sensor's resonance frequency values are steady and only fluctuate slightly, in order to improve the identification accuracy of Chinese liquors using the e-nose, the sensors in the sensor box should be in the proper place, i.e., where the fluctuations of the flow-induced forces is relatively small. This plays a significant reference role in determining the optimum design of the e-nose for accurately identifying Chinese liquors.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-12-28
    Description: Vibration sensor data from a mechanical system are often associated with important measurement information useful for machinery fault diagnosis. However, in practice the existence of background noise makes it difficult to identify the fault signature from the sensing data. This paper introduces the time-frequency manifold (TFM) concept into sensor data denoising and proposes a novel denoising method for reliable machinery fault diagnosis. The TFM signature reflects the intrinsic time-frequency structure of a non-stationary signal. The proposed method intends to realize data denoising by synthesizing the TFM using time-frequency synthesis and phase space reconstruction (PSR) synthesis. Due to the merits of the TFM in noise suppression and resolution enhancement, the denoised signal would have satisfactory denoising effects, as well as inherent time-frequency structure keeping. Moreover, this paper presents a clustering-based statistical parameter to evaluate the proposed method, and also presents a new diagnostic approach, called frequency probability time series (FPTS) spectral analysis, to show its effectiveness in fault diagnosis. The proposed TFM-based data denoising method has been employed to deal with a set of vibration sensor data from defective bearings, and the results verify that for machinery fault diagnosis the method is superior to two traditional denoising methods.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-03-24
    Description: Sustainability, Vol. 10, Pages 928: Carbon Footprint and Driving Forces of Saline Agriculture in Coastally Reclaimed Areas of Eastern China: A Survey of Four Staple Crops Sustainability doi: 10.3390/su10040928 Authors: Jianguo Li Wenhui Yang Yi Wang Qiang Li Lili Liu Zhongqi Zhang Carbon emissions have always been a key issue in agricultural production. Due to the specific natural factors in the soil of saline agriculture, there are distinctive characteristics in saline agricultural production as compared with traditional agricultural zones. Here, we have adopted the theory of life cycle assessment and employed the Intergovernmental Panel on Climate Change (IPCC) greenhouse gas (GHG) field calculation to estimate the GHG emissions, derived from the staple crop productions (i.e., barley, wheat, corn and rice). In addition, our study further analyzed the main driving forces of carbon emissions and proposed some effective measures to reduce them. Our results have showed that: (1) carbon footprint from the four crops in the study area varies from 0.63 to 0.77 kg CO2 eq·kg−1, which is higher than that from traditional agriculture; (2) GHG emissions from Fertilizer-Nitrogen (N) manufacture and inorganic N application have contributed to the greatest percentage of carbon footprint. Compared with traditional agricultural zones, fertilizer-N application and paddy irrigation involved with crop productions have overall greater contributions to carbon footprint; (3) carbon emissions from saline agriculture can be reduced significantly by planting-breeding combination to reduce the amount of N fertilizer application, improving the traditional rotation system, and developing water-saving agriculture and ecological agriculture.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...