GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • Geological Society of America (GSA)  (2)
Document type
  • Articles  (2)
Source
Publisher
Years
Journal
Topic
  • 1
    Publication Date: 2013-11-22
    Description: Accommodation of collisional shortening in the Central Alps varies dramatically along strike, and this change is inferred to result from along-strike changes of rheology. In the western Central Alps, 90% of shortening is accommodated in the thickened lower plate. In the eastern Central Alps, 90% of shortening is accommodated in the upper plate. In the central Central Alps, shortening is almost equally partitioned between the two plates. The lower crust of the Adriatic plate forms a wedge that reaches a maximum north-south extension of almost 70 km in the Engadine section, progressively decreasing westward and disappearing along the Simplon section. This difference indicates an along-strike increase of intra-plate decoupling, limiting shortening of the Adriatic plate to the middle and upper parts of the crust. Whereas the upper plate indents into the thickened accreted lower plate in the Simplon section, it is the lower plate that indents an intensely deforming upper plate in the Engadine section. In the west, the Ivrea mantle body increases the strength of the Adriatic upper plate, and Barrovian metamorphism weakens the lower plate. Therefore, along-strike transfer of shortening from one plate to the other appears to be a manifestation of along-strike changes in rheology deep in the crust.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-04-25
    Description: Identifying topographic and erosion rate response to tectonic and climatic forcing remains challenging. This is in part because of the difficulty in isolating the respective roles of climate and tectonics. Here we exploit 2500 thermochronometric data points collected over several decades of research, using a new inverse technique, to image the space-time evolution of erosion rate across the European Alps over the past 35 m.y. The most striking feature of our results is a two- to three-fold increase in erosion rate over the past 2 m.y. exclusively within the Western and Central Alps. This increase appears to be controlled by the inferred high rock uplift rate due to the progressive detachment of the European slab under the Western Alps. The similarity in mean elevation between the Western and Eastern Alps indicates a surprisingly low topographic response to this differential tectonic forcing, and points to the role of enhanced glacial erosion in response to surface uplift.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...