GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Frontiers in Psychiatry, Frontiers Media SA, Vol. 13 ( 2022-9-28)
    Abstract: Synthetic cannabinoid receptor agonists (SCRAs) continue to make up a significant portion new psychoactive substances (NPS) detected and seized worldwide. Due to their often potent activation of central cannabinoid receptors in vivo , use of SCRAs can result in severe intoxication, in addition to other adverse health effects. Recent detections of AB-4CN-BUTICA, MMB-4CN-BUTINACA, MDMB-4F-BUTICA and MDMB-4F-BUTINACA mark a continuation in the appearance of SCRAs bearing novel tail substituents. The proactive characterization campaign described here has facilitated the detection of several new SCRAs in toxicological case work. Here we detail the synthesis, characterization, and pharmacological evaluation of recently detected SCRAs, as well as a systematic library of 32 compounds bearing head, tail, and core group combinations likely to appear in future. In vitro radioligand binding assays revealed most compounds showed moderate to high affinity at both CB 1 (p K i = & lt; 5 to 8.89 ± 0.09 M) and CB 2 (p K i = 5.49 ± 0.03 to 9.92 ± 0.09 M) receptors. In vitro functional evaluation using a fluorescence-based membrane potential assay showed that most compounds were sub-micromolar to sub-nanomolar agonists at CB 1 (pEC 50 = & lt; 5 to 9.48 ± 0.14 M) and CB 2 (pEC 50 = 5.92 ± 0.16 to 8.64 ± 0.15 M) receptors. An in silico receptor-ligand docking approach was utilized to rationalize binding trends for CB 2 with respect to the tail substituent, and indicated that rigidity in this region (i.e., 4-cyanobutyl) was detrimental to affinity.
    Type of Medium: Online Resource
    ISSN: 1664-0640
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2564218-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Pharmacy & Pharmaceutical Sciences, Frontiers Media SA, Vol. 18, No. 4 ( 2015-08-27), p. 328-
    Abstract: Purpose: The natural products resveratrol and trans-ε-viniferin have been reported to have many beneficial effects, which include the enhancement of cognition and memory. There have been no studies which have reported the effects of these compounds on the different GABAA receptor subtypes and this study aimed to address this. Methods: The effects of both resveratrol, and its dimer, trans-ε-viniferin, have been investigated on different GABAA receptor subtypes expressed in Xenopus laevis oocytes, using the two-electrode voltage clamp technique. Results: Resveratrol induced a current of 22 ± 3.53 nA in the α1β2γ2L subtype of the GABAA receptor (but not in the α5β3γ2L and α2β2γ2L subtypes) when applied alone. It also positively modulated the GABA-induced current (IGABA) in α1β2γ2L receptors, in adose-dependent manner (EC50 58.24 μM). The effects of resveratrol were not sensitive to the benzodiazepine antagonist flumazenil. trans-ε-Viniferin exhibited a different pattern of activity to resveratrol; it alone had no effect on any of the subtypes, but it did negatively modulate the GABA-induced current (IGABA) in all three subtypes. The greatest inhibition was found in the α1β2γ2L subtype (IC50 5.79 μM), with the inhibition in the α2β2γ2L (IC50 of 19.08 μM) and α5β3γ2L (IC50 of 21.05 μM) subtypes being similar. The effects of trans-ε-viniferin in α1β2γ2L and α2β2γ2L receptors werealso not sensitive to the benzodiazepine antagonist flumazenil while, in the α5β3γ2L subtype the effect was not sensitive to the inverse agonist L-655,708, indicating different binding sites for this molecule. Conclusions: The results of the present study indicate that both resveratrol and trans-ε-viniferin modulate the GABA-induced current in different ways, and that trans-ε-viniferin may be a lead compound for the discovery of agents which selectively inhibit the GABA-induced current in α1-containing subtypes.This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.
    Type of Medium: Online Resource
    ISSN: 1482-1826 , 1482-1826
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2015
    detail.hit.zdb_id: 1422972-9
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...