GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Frontiers in Toxicology, Frontiers Media SA, Vol. 5 ( 2023-5-23)
    Abstract: The growing number of chemicals in the current consumer and industrial markets presents a major challenge for regulatory programs faced with the need to assess the potential risks they pose to human and ecological health. The increasing demand for hazard and risk assessment of chemicals currently exceeds the capacity to produce the toxicity data necessary for regulatory decision making, and the applied data is commonly generated using traditional approaches with animal models that have limited context in terms of human relevance. This scenario provides the opportunity to implement novel, more efficient strategies for risk assessment purposes. This study aims to increase confidence in the implementation of new approach methods in a risk assessment context by using a parallel analysis to identify data gaps in current experimental designs, reveal the limitations of common approaches deriving transcriptomic points of departure, and demonstrate the strengths in using high-throughput transcriptomics (HTTr) to derive practical endpoints. A uniform workflow was applied across six curated gene expression datasets from concentration-response studies containing 117 diverse chemicals, three cell types, and a range of exposure durations, to determine tPODs based on gene expression profiles. After benchmark concentration modeling, a range of approaches was used to determine consistent and reliable tPODs. High-throughput toxicokinetics were employed to translate in vitro tPODs (µM) to human-relevant administered equivalent doses (AEDs, mg/kg-bw/day). The tPODs from most chemicals had AEDs that were lower (i.e., more conservative) than apical PODs in the US EPA CompTox chemical dashboard, suggesting in vitro tPODs would be protective of potential effects on human health. An assessment of multiple data points for single chemicals revealed that longer exposure duration and varied cell culture systems (e.g., 3D vs. 2D) lead to a decreased tPOD value that indicated increased chemical potency. Seven chemicals were flagged as outliers when comparing the ratio of tPOD to traditional POD, thus indicating they require further assessment to better understand their hazard potential. Our findings build confidence in the use of tPODs but also reveal data gaps that must be addressed prior to their adoption to support risk assessment applications.
    Type of Medium: Online Resource
    ISSN: 2673-3080
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 3017830-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Frontiers in Immunology, Frontiers Media SA, Vol. 15 ( 2024-4-19)
    Abstract: To date, studies investigating the association between pre-biologic biomarker levels and post-biologic outcomes have been limited to single biomarkers and assessment of biologic efficacy from structured clinical trials. Aim To elucidate the associations of pre-biologic individual biomarker levels or their combinations with pre-to-post biologic changes in asthma outcomes in real-life. Methods This was a registry-based, cohort study using data from 23 countries, which shared data with the International Severe Asthma Registry (May 2017-February 2023). The investigated biomarkers (highest pre-biologic levels) were immunoglobulin E (IgE), blood eosinophil count (BEC) and fractional exhaled nitric oxide (FeNO). Pre- to approximately 12-month post-biologic change for each of three asthma outcome domains (i.e. exacerbation rate, symptom control and lung function), and the association of this change with pre-biologic biomarkers was investigated for individual and combined biomarkers. Results Overall, 3751 patients initiated biologics and were included in the analysis. No association was found between pre-biologic BEC and pre-to-post biologic change in exacerbation rate for any biologic class. However, higher pre-biologic BEC and FeNO were both associated with greater post-biologic improvement in FEV 1 for both anti-IgE and anti-IL5/5R, with a trend for anti-IL4Rα. Mean FEV 1 improved by 27-178 mL post-anti-IgE as pre-biologic BEC increased (250 to 1000 cells/µL), and by 43-216 mL and 129-250 mL post-anti-IL5/5R and -anti-IL4Rα, respectively along the same BEC gradient. Corresponding improvements along a FeNO gradient (25-100 ppb) were 41-274 mL, 69-207 mL and 148-224 mL for anti-IgE, anti-IL5/5R, and anti-IL4Rα, respectively. Higher baseline BEC was also associated with lower probability of uncontrolled asthma (OR 0.392; p=0.001) post-biologic for anti-IL5/5R. Pre-biologic IgE was a poor predictor of subsequent pre-to-post-biologic change for all outcomes assessed for all biologics. The combination of BEC + FeNO marginally improved the prediction of post-biologic FEV 1 increase (adjusted R 2 : 0.751), compared to BEC (adjusted R 2 : 0.747) or FeNO alone (adjusted R 2 : 0.743) (p=0.005 and & lt;0.001, respectively); however, this prediction was not improved by the addition of IgE. Conclusions The ability of higher baseline BEC, FeNO and their combination to predict biologic-associated lung function improvement may encourage earlier intervention in patients with impaired lung function or at risk of accelerated lung function decline.
    Type of Medium: Online Resource
    ISSN: 1664-3224
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2024
    detail.hit.zdb_id: 2606827-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Forests and Global Change Vol. 5 ( 2022-11-22)
    In: Frontiers in Forests and Global Change, Frontiers Media SA, Vol. 5 ( 2022-11-22)
    Abstract: Maps of species composition are important for assessing a wide range of ecosystem functions in forested landscapes, including processes shaping community structure at broader (e.g., climate) and finer (e.g., disturbance) scales. Incorporating recently available remotely sensed datasets has the potential to improve species composition mapping by providing information to help predict species presence and relative abundance. Using USDA Forest Service Forest Inventory and Analysis plot data and the gradient nearest neighbor imputation modeling approach in eastern Washington, USA, we developed tree species composition and structure maps based on climate, topography, and two sources of remote sensing: height from digital aerial photogrammetry (DAP) of pushbroom aerial photography and Sentinel-2 multispectral satellite imagery. We tested the accuracy of these maps based on their capacity to predict species occurrence and proportional basal area for 10 coniferous tree species. In this study region, climate, topography, and location explained much of the species occurrence patterns, while both DAP and Sentinel-2 data were also important in predicting species proportional basal area. Overall accuracies for the best species occurrence model were 68–92% and R 2 for the proportional basal area was 0.08–0.55. Comparisons of model accuracy with and without remote sensing indicated that adding some combination of DAP metrics and/or Sentinel-2 imagery increased R 2 for the proportional basal area by 0.25–0.45, but had minor and sometimes negative effects on model skill and accuracy for species occurrence. Thus, species ranges appear most strongly constrained by environmental gradients, but abundance depends on forest structure, which is often determined by both environment and disturbance history. For example, proportional basal area responses to moisture limitation and canopy height varied by species, likely contributing to regional patterns of species dominance. However, local-scale examples indicated that remotely sensed forest structures representing recent disturbance patterns likely impacted tree community composition. Overall, our results suggest that characterizing geospatial patterns in tree communities across large landscapes may require not only environmental factors like climate and topography, but also information on forest structure provided by remote sensing.
    Type of Medium: Online Resource
    ISSN: 2624-893X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2968523-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 5 ( 2018-9-10)
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2018
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Marine Science Vol. 9 ( 2022-12-8)
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 9 ( 2022-12-8)
    Abstract: Sea level rise is increasing the frequency of high tide flooding in coastal communities across the United States. Although the occurrence and severity of high-tide flooding will continue to increase, skillful prediction of high tide flooding on monthly-to-annual time horizons is lacking in most regions. Here, we present an approach to predict the daily likelihood of high tide flooding at coastal locations throughout the U.S. using a novel probabilistic modeling approach that relies on relative sea-level rise, tide predictions, and climatological non-tidal residuals as measured by NOAA tide gauges. A retrospective skill assessment using the climatological sea level information indicates that this approach is skillful at 61 out of 92 NOAA tide gauges where at least 10 high tide flood days occurred from 1997–2019. In this case, a flood day occurs when the observed water level exceeds the gauge-specific high tide flood threshold. For these 61 gauges, on average 35% of all floods are accurately predicted using this model, with over half of the floods accurately predicted at 18 gauges. The corresponding False-Alarm-Rate is less than 10% for all 61 gauges. Including mean sea level anomaly persistence at leads of 1 and 3 months further improves model skill in many locations, especially the U.S. Pacific Islands and West Coast. Model skill is shown to increase substantially with increasing sea level at nearly all locations as high tides more frequently exceed the high tide flooding threshold. Assuming an intermediate amount of relative sea level rise, the model will likely be skillful at 93 out of the 94 gauges projected to have regular flooding by 2040. These results demonstrate that this approach is viable to be incorporated into NOAA decision-support products to provide guidance on likely high tide flooding days. Further, the structure of the model will enable future incorporation of mean sea level anomaly predictions from numerical, statistical, andmachine learning forecast systems.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Frontiers in Built Environment, Frontiers Media SA, Vol. 6 ( 2020-11-25)
    Abstract: With the goal to facilitate evaluation and mitigation of the risks from natural hazards, the Natural Hazards Engineering Research Infrastructure’s Computational Modeling, and Simulation Center (NHERI SimCenter) is developing computational workflows for regional hazard simulations. These simulations enable research to combine detailed assessments of individual facilities with comprehensive regional-scale simulations of natural hazard effects. By integration of multi-fidelity and multi-resolution models to assess natural hazard impacts on buildings, infrastructure systems and other constructed facilities, the approach enables the engineering analysis of public policies and socio-economic impacts. Effective development of platforms for high-resolution regional simulations requires modular workflows that can integrate state-of-the-art models with information technologies and high-performance computing resources. In this paper, the modular architecture of the computational workflow models is described and illustrated through testbed applications to evaluate regional building damage under an earthquake and a hurricane scenario. Developed and disseminated as open-source software on the NHERI DesignSafe Cyberinfrastructure, the computational models and workflows are enabling multi-disciplinary collaboration on research to mitigate the effects of natural hazard disasters.
    Type of Medium: Online Resource
    ISSN: 2297-3362
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2020
    detail.hit.zdb_id: 2835358-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Frontiers Media SA ; 2024
    In:  Frontiers in Marine Science Vol. 11 ( 2024-2-22)
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 11 ( 2024-2-22)
    Abstract: Realistic representation of monthly sea level anomalies in coastal regions has been a challenge for global ocean reanalyses. This is especially the case in coastal regions where sea levels are influenced by western boundary currents such as near the U.S. Atlantic Coast and the Gulf of Mexico. For these regions, most ocean reanalyses compare poorly to observations. Problems in reanalyses include errors in data assimilation and horizontal resolutions that are too coarse to simulate energetic currents like the Gulf Stream and Loop Current System. However, model capabilities are advancing with improved data assimilation and higher resolution. Here, we show that some current-generation ocean reanalyses produce monthly sea level anomalies with improved skill when compared to satellite altimetry observations of sea surface heights. Using tide gauge observations for coastal verification, we find the highest skill associated with the GLORYS12 and HYCOM ocean reanalyses. Both systems assimilate altimetry observations and have eddy-resolving horizontal resolutions (1/12°). We found less skill in three other ocean reanalyses (ACCESS-S2, ORAS5, and ORAP6) with coarser, though still eddy-permitting, resolutions (1/4°). The operational reanalysis from ECMWF (ORAS5) and their pilot reanalysis (ORAP6) provide an interesting comparison because the latter assimilates altimetry globally and with more weight, as well as assimilating ocean observations over continental shelves. We find these attributes associated with improved skill near many tide gauges. We also assessed an older reanalysis (CFSR), which has the lowest skill likely due to its lower resolution (1/2°) and lack of altimetry assimilation. ACCESS-S2 likewise does not assimilate altimetry, although its skill is much better than CFSR and only somewhat lower than ORAS5. Since coastal flooding is influenced by sea level anomalies, the recent development of skilful ocean reanalyses on monthly timescales may be useful for better understanding the physical processes associated with flood risks.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2024
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Frontiers in Oncology, Frontiers Media SA, Vol. 14 ( 2024-5-10)
    Abstract: Cancer therapies predispose childhood cancer survivors to various treatment-related late effects, which contribute to a higher symptom burden, chronic health conditions (CHCs), and premature mortality. Regular monitoring of symptoms between clinic visits is useful for timely medical consultation and interventions that can improve quality of life (QOL). The Health Share Study aims to utilize mHealth to collect patient-generated health data (PGHD; daily symptoms, momentary physical health status) and develop survivor-specific risk prediction scores for mitigating adverse health outcomes including poor QOL and emergency room admissions. These personalized risk scores will be integrated into the hospital-based electronic health record (EHR) system to facilitate clinician communications with survivors for timely management of late effects. Methods This prospective study will recruit 600 adult survivors of childhood cancer from the St. Jude Lifetime Cohort study. Data collection include 20 daily symptoms via a smartphone, objective physical health data (physical activity intensity, sleep performance, and biometric data including resting heart rate, heart rate variability, oxygen saturation, and physical stress) via a wearable activity monitor, patient-reported outcomes (poor QOL, unplanned healthcare utilization) via a smartphone, and clinically ascertained outcomes (physical performance deficits, onset of/worsening CHCs) assessed in the survivorship clinic. Participants will complete health surveys and physical/functional assessments in the clinic at baseline, 2) report daily symptoms, wear an activity monitor, measure blood pressure at home over 4 months, and 3) complete health surveys and physical/functional assessments in the clinic 1 and 2 years from the baseline. Socio-demographic and clinical data abstracted from the EHR will be included in the analysis. We will invite 20 cancer survivors to investigate suitable formats to display predicted risk information on a dashboard and 10 clinicians to suggest evidence-based risk management strategies for adverse health outcomes. Analysis Machine and statistical learning will be used in prediction modeling. Both approaches can handle a large number of predictors, including longitudinal patterns of daily symptoms/other PGHD, along with cancer treatments and socio-demographics. Conclusion The individualized risk prediction scores and added communications between providers and survivors have the potential to improve survivorship care and outcomes by identifying early clinical presentations of adverse events.
    Type of Medium: Online Resource
    ISSN: 2234-943X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2024
    detail.hit.zdb_id: 2649216-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Frontiers Media SA ; 2021
    In:  Frontiers in Cardiovascular Medicine Vol. 8 ( 2021-12-6)
    In: Frontiers in Cardiovascular Medicine, Frontiers Media SA, Vol. 8 ( 2021-12-6)
    Abstract: Chronic diseases in growing children, such as autoimmune disorders, obesity, and cancer, are hallmarked by musculoskeletal growth disturbances and osteoporosis. Many of the skeletal changes in these children are thought to be secondary to chronic inflammation. Recent studies have likewise suggested that changes in coagulation and fibrinolysis may contribute to musculoskeletal growth disturbances. In prior work, we demonstrated that mice deficient in plasminogen, the principal protease of degrading and clearing fibrin matrices, suffer from inflammation-driven systemic osteoporosis and that elimination of fibrinogen resulted in normalization of IL-6 levels and complete rescue of the skeletal phenotype. Given the intimate link between coagulation, fibrinolysis, and inflammation, here we determined if persistent fibrin deposition, elevated IL-6, or both contribute to early skeletal aging and physeal disruption in chronic inflammatory conditions. Skeletal growth as well as bone quality, physeal development, and vascularity were analyzed in C57BL6/J mice with plasminogen deficiency with and without deficiencies of either fibrinogen or IL-6. Elimination of fibrinogen, but not IL-6, rescued the skeletal phenotype and growth disturbances in this model of chronic disease. Furthermore, the skeletal phenotypes directly correlated with both systemic and local vascular changes in the skeletal environment. In conclusion, these results suggest that fibrinolysis through plasmin is essential for skeletal growth and maintenance, and is multifactorial by limiting inflammation and preserving vasculature.
    Type of Medium: Online Resource
    ISSN: 2297-055X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2781496-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Frontiers Media SA ; 2021
    In:  Frontiers in Marine Science Vol. 8 ( 2021-3-22)
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 8 ( 2021-3-22)
    Abstract: As highly mobile predators with extensive home ranges, some shark species often utilize a continuum of habitats across the continental shelf ranging from the surf zone to the open ocean. For many species, these cross-shelf distributions can change depending on ontogeny or seasonal conditions. Recent research has confirmed a white shark ( Carcharodon carcharias ) summer nursery off Long Island, New York; however, habitat characterization of this nursery has not yet been conducted nor has fine-scale analysis of vertical behavior. Between 2016 and 2019, 21 young-of-the-year and juvenile white sharks were fitted with satellite and acoustic tags to examine distribution and selection for a suite of oceanographic variables during their late summertime (i.e., August to October) residence in the New York Bight. Horizontal position estimates were used to extract a suite of environmental measurements via remote sensing platforms and were linked with vertical profiles to produce three-dimensional movements for a subset of individuals also fitted with pop-up satellite archival tags ( n = 7). Sharks exhibited horizontal movements parallel to Long Island’s southern shoreline and coastal New Jersey, with distances from 0.1 to 131.5 km from shore. Log-likelihood chi-square analyses determined selection for waters with underlying bathymetry of 20–30 m, sea surface temperatures between 20.0 and 22.0°C, sea surface salinities between 31.0 and 32.0 ppt, and chlorophyll-a concentrations between 2.0 and 8.0 mg⋅m –3 . Multiple individuals also traversed the mid- to outer shelf region after leaving the Montauk tagging area. Vertical depth profiles illustrated oscillations between the surface and 199 m of water, with an average swimming depth of 9.2 ± 8.9 m. Water column temperatures during these oscillations ranged between 7.9 and 26.2°C (mean = 19.5 ± 2.0°C) with several individuals traversing highly stratified regions presumably associated with a mid-shelf cold pool adjacent to the Hudson Shelf Valley. These results suggest young white sharks exhibit connectivity between the immediate shoreline and mid-continental shelf region, where they play important ecological roles as predators on a variety of species. Our study improves characterization of essential fish habitat for young white sharks and provides new insights into their reliance on this productive continental shelf ecosystem.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...