GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Frontiers  (2)
Document type
Publisher
Years
  • 1
    Publication Date: 2024-02-07
    Description: Ocean acidification (OA) is a serious consequence of climate change with complex organism-to-ecosystem effects that have been observed through field observations but are mainly derived from experimental studies. Although OA trends and the resulting biological impacts are likely exacerbated in the semi-enclosed and highly populated Mediterranean Sea, some fundamental knowledge gaps still exist. These gaps are at tributed to both the uneven capacity for OA research that exists between Mediterranean countries, as well as to the subtle and long-term biological, physical and chemical interactions that define OA impacts. In this paper, we systematically analyzed the different aspects of OA research in the Mediterranean region based on two sources: the United Nation’s International Atomic Energy Agency’s (IAEA) Ocean Acidification International Coordination Center (OA-ICC) database, and an extensive survey. Our analysis shows that 1) there is an uneven geographic capacity in OA research, and illustrates that both the Algero-Provencal and Ionian sub-basins are currently the least studied Mediterranean areas, 2) the carbonate system is still poorly quantified in coastal zones, and long-term time-series are still sparse across the Mediterranean Sea, which is a challenge for studying its variability and assessing coastal OA trends, 3) the most studied groups of organisms are autotrophs (algae, phanerogams, phytoplankton), mollusks, and corals, while microbes, small mollusks (mainly pteropods), and sponges are among the least studied, 4) there is an overall paucity in socio-economic, paleontological, and modeling studies in the Mediterranean Sea, and 5) in spite of general resource availability and the agreement for improved and coordinated OA governance, there is a lack of consistent OA policies in the Mediterranean Sea. In addition to highlighting the current status, trends and gaps of OA research, this work also provides recommendations, based on both our literature assessment and a survey that targeted the Mediterranean OA scientific community. In light of the ongoing 2021-2030 United Nations Decade of Ocean Science for Sustainable Development, this work might provide a guideline to close gaps of knowledge in the Mediterranean OA research.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-22
    Description: We carried out measurements of the CO2 system parameters to evaluate the impact of carbonate and nutrients' chemistry on phytoplankton populations in the Gulf of Guinea (GoG). The seasonal variations of the CO2 system parameters (fCO2, DIC, pH and TA) along with nitrates and phosphates were quantified weekly at surface (between 0 and 5 m depth) (5.57 degrees N - 4.57 degrees W) in the GoG from May to December 2020. Seawater pH varied widely during the study period, ranging between 8.10-8.35 pH units; DIC and TA varied between 1810 and 2094 mu mol kg-1, and between 2051 and 2216 mu mol-1 respectively. DIC peaks coincided with the high upwelling period (August and September). For phytoplankton, a total of 60 species were found belonging to four taxonomic phyla: Bacillariophyta, Dinophyta, Chlorophyta and Dictyochophyta. The highest number of phytoplanktonic species were recorded for Bacillariophyta phylum with 36 species (60%). The phylum Dinophyta comprised 22 taxa (36%) and Chlorophyta and Dictyochophyta recorded only one species (2%). The highest specific diversities were observed in August and September with 29 and 26 taxa respectively and the lowest was found in October-November (5 taxa) and December (one taxa). Bacillariophyta and Dinophyta appeared throughout the entire study period. The only species for Chlorophyta phylum appeared in June and July and the Dictyochophyta's one in May, July and August. In general, the physical (SST, SSS) and chemical (TA, DIC, pH) parameters influenced less than 50% of the phytoplankton population in the coastal area of the GoG. Our study shows that Bacillariophyta population grows up when the physicochemical parameters' variability increase.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...