GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Biologie in unserer Zeit 29 (1999), S. 375-375 
    ISSN: 0045-205X
    Keywords: Life and Medical Sciences
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Archives of Insect Biochemistry and Physiology 17 (1991), S. 3-13 
    ISSN: 0739-4462
    Keywords: intra- and extracellular enzymes ; kinetic properties ; inhibition ; Chemistry ; Food Science, Agricultural, Medicinal and Pharmaceutical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Kc-cells from Drosophila melanogaster, grown under serum-free conditions, produce two β-hexosaminidases and secrete these enzymes into the medium. The two enzymes were separated by DEAE-exchange chromatography. According to their substrate specificities one enzyme is a β-N-acetyl-D-glucosaminidase (E.C.3.2.1.30), the other one a β-N-acetyl-D-hexosaminidase (E.C.3.2.1.52). The β-N-acetyl-D-glucosaminidase is predominant in the medium, the β-N-acetyl-D-hexosaminidase within the cells. The Km values for the substrates pNP-GlcNAc, pNP-GalNAc, and (GlcNAc)2 are 0.8, 16.73, and 1.67 mM for the β-N-acetyl-D-glucosaminidase and 0.24, 0.44, and 0.2 mM for the β-N-acetyl-D-hexosaminidase. Both enzymes are inhibited by the products and the β-N-acetyl-D-glucosaminidase is also inhibited stereospecifically by the substrates pNP-GlcNAc and (GlcNAc)2. Both enzymes are inhibited in a partial competitive way by acetamidolactones, the Kis being as low as 0.1 μM.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Archives of Insect Biochemistry and Physiology 18 (1991), S. 45-53 
    ISSN: 0739-4462
    Keywords: molecular mass ; pH and temperature optima ; thermal stability ; influence of ionic strength ; Chemistry ; Food Science, Agricultural, Medicinal and Pharmaceutical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Kc-cells from Drosophila produce two different β-D-hexosaminidases, a β-N-acetyl-D-glucosaminidase (E.C.3.2.1.30) and a β-N-acetyl-D-hexosaminidase (E.C.3.2.1.52), which are also secreted into the medium. The Mr of both enzymes is about 126,000 ± 9,700; the S-values are 8.37 ± 0.44. Both enzymes have about the same pH optima at 5.5 and the same thermal stability. The temperature optima are identical (50°C) for both enzymes if p-nitrophenyl-N-acetylglucosaminide is used as a substrate. However, when p-nitrophenyl-N-acetylgalactoseaminide is used as the substrate the β-N-acetyl-D-hexosaminidase has a temperature optimum about 10°C higher. With higher salt concentrations, the activity of the β-N-acetyl-D-glucosaminidase increases, whereas β-N-acetyl-D-hexosaminidase is inhibited. Both enzymes also differ in their sensitivity to urea, the β-N-acetyl-D-hexosaminidase being less sensitive than the β-N-acetyl-D-glucosaminidase.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-03-09
    Description: The impacts of biochemicals driving food web processes are under investigation for just the last few decades. In addition, as jellyfish are drawing increasing attentions because of their mass developments and of their potential capacity of driving food web structures and energy flow by ‘top-down’ and ‘bottom-up’ controls. We here show that the provision with the biochemical complex thiamin (vitamin B1) to the common phytoplankton Rhodomonas baltica altered its fatty acid (FA) pattern towards 3-highly-unsaturated FAs (3-HUFA) and that this pattern was further transferred up to the zooplankton consumer, the copepod Acartia tonsa. However, polyps of the Jellyfish Aurelia aurita feeding on A. tonsa only had a low relative 3-HUFA content, especially due to a reduction in 22:63 (DHA), but elevated levels of 20:46 (ARA). The high proportion of the -6 HUFA, ARA in polyps may provide evidence for preferential conversion of ARA in polyps, eventually from DHA in a so far unknown pathway. In contrast to A. tonsa, newly hatched A. salina nauplii used as food for A. aurita polyps were almost devoid of HUFA, but contained high levels of C18 polyunsaturated FAs (C18-PUFA). Consequently, polyps feeding on them contained few HUFA, while high levels of C18-PUFA predominated. This suggests that A. aurita polyps cannot efficiently convert 3 C18-PUFA to 3-HUFA. In addition, besides a decrease in saturated FAs, especially an increase in HUFA in A. aurita polyps with decreasing temperature was observed, for which the dietary provision with HUFA seemed to be critical. Altering the FA pattern as a response of temperature reflects an adaptation to seasonal changes and may be related to their life history plasticity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-03-09
    Description: Climate change has profound impacts on marine biodiversity and biodiversity changes in turn might affect the community sensitivity to impacts of abiotic changes. We used mesocosm experiments and Next Generation Sequencing to study the response of the natural Baltic and Mediterranean unicellular eukaryotic plankton communities (control and +6oC heat shock) to subsequent salinity changes (-5 psu, +5 psu). The impact on Operational Taxonomic Unit (OTU) richness, taxonomic and functional composition and rRNA:rDNA ratios were examined. Our results showed that heat shock leads to lower OTU richness (21% fewer OTUs in the Baltic and 14% fewer in the Mediterranean) and a shift in composition towards pico- and nanophytoplankton and heterotrophic related OTUs. Heat shock also leads to increased rRNA:rDNA ratios for pico- and micrograzers. Less than 18% of shared OTUs were found among the different salinities indicating the crucial role of salinity in shaping communities. The response of rRNA:rDNA ratios varied highly after salinity changes. In both experiments the diversity decrease brought about by heat shock influenced the sensitivity to salinity changes. The heat shock either decreased or increased the sensitivity of the remaining community, depending on whether it removed the more salinity-sensitive or the salinity-tolerant taxa.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-23
    Description: We compared the development and fatty acid content of the harpacticoid copepods Tachidius discipes and Tisbe sp. fed with different microalgal species (Dunaliella tertiolecta, Rhodomonas sp., Phaeodactylum tricornutum, Isochrysis galbana and a concentrate of Pavlova sp.), which differed in cell size and fatty acid composition. Tisbe could develop in 11 days with every alga to the same average stage, whereas Tachidius developed poorly when fed with Isochrysis and Dunaliella. Feeding with Phaeodactylum resulted in a fast development of both copepods at low algal concentrations. However, reproduction was higher with Rhodomonas as food than with the other algae. Fatty acid compositions of copepods were influenced by their food source, but both were able to convert docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) from precursors. Tachidius fed with Rhodomonas or Phaeodactylum was closest to the DHA/EPA/arachidonic acid (ARA) ratio of 10 : 5 : 1 considered optimal for some marine fish larvae. Tachidius showed similar development and reproduction capacity as Tisbe, but requested higher absolute fatty acid contents in the diet. Tisbe was superior in the utilization of bacteria as additional food source and the bioconversion of precursor fatty acids. Phaeodactylum and Rhodomonas are recommendable food sources for both copepod species, but Phaeodactylum is more easily cultured.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-24
    Description: Conceptual models predict a unimodal effect of consumer abundance on prey diversity with the highest diversity at intermediate consumer abundance (intermediate disturbance hypothesis). Consumer selectivity and prey productivity are assumed to be further important determinants. Preferential grazing on dominant prey species favoured by high nutrient supply is supposed to increase prey diversity, whereas the effect of consumers on prey diversity may be negative under low nutrient conditions (grazer reversal hypothesis). We tested the effect of four common consumers the isopod Idotea baltica, the amphipod Gammarus oceanicus, and the gastropods Littorina littorea and Rissoa membranacea on diversity and composition of epiphytes growing on eelgrass Zostera marina. Consumer density was manipulated (four levels: grazer free control, low, medium, high) based on abundances observed in eelgrass systems. Additionally, we manipulated nutrient supply (three levels) and the presence of Idotea in a factorial experiment. The impact of consumer abundance on epiphyte diversity varied depending on consumer identity and epiphyte evenness was affected rather than species number in this short-term experiment. Idotea reduced epiphyte diversity (Shannon-Wiener index H') and Gammarus increased epiphyte diversity. Littorina had no effect at low and medium abundance, but a negative effect in the high density treatment. Only Rissoa supported the conceptual models as it caused the proposed unimodal pattern in epiphyte diversity. The varying species-specific selectivity of the studied consumers is likely to explain their diverse impact on epiphyte diversity. Nutrients enhanced epiphyte diversity at medium enrichment, whereas higher nutrient supply reduced epiphyte diversity. The effect of Idotea changed from negative at low nutrient concentration to positive at higher nutrient supply, supporting the grazer reversal hypothesis. This study implies that consumer species identity and nutrient concentrations are important in controlling prey diversity and composition. Different consumer selectivity and changes in selectivity with growing consumer abundance and nutrient concentration are the causal factors for this effect.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-10-26
    Description: Climatic warming is a primary driver of change in ecosystems worldwide. Here, we synthesize responses of species richness and evenness from 187 experimental warming studies in a quantitative meta-analysis. We asked 1) whether effects of warming on diversity were detectable and consistent across terrestrial, freshwater and marine ecosystems, 2) if effects on diversity correlated with intensity, duration, and experimental unit size of temperature change manipulations, and 3) whether these experimental effects on diversity interacted with ecosystem types. Using multilevel mixed linear models and model averaging, we also tested the relative importance of variables that described uncontrolled environmental variation and attributes of experimental units. Overall, experimental warming reduced richness across ecosystems (mean log-response ratio = –0.091, 95% bootstrapped CI: –0.13, –0.05) representing an 8.9% decline relative to ambient temperature treatments. Richness did not change in response to warming in freshwater systems, but was more strongly negative in terrestrial (–11.8%) and marine (–10.5%) experiments. In contrast, warming impacts on evenness were neutral overall and in aquatic systems, but weakly negative on land (7.6%). Intensity and duration of experimental warming did not explain variation in diversity responses, but negative effects on richness were stronger in smaller experimental units, particularly in marine systems. Model-averaged parameter estimation confirmed these main effects while accounting for variation in latitude, ambient temperature at the sites of manipulations, venue (field versus lab), community trophic type, and whether experiments were open or closed to colonization. These analyses synthesize extensive experimental evidence showing declines in local richness with increased temperature, particularly in terrestrial and marine communities. However, the more variable effects of warming on evenness were better explained by the random effect of site identity, suggesting that effects on species’ relative abundances were contingent on local species composition.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-02-08
    Description: Marine food webs form the major component of the biological pump and play a central role in the global carbon (C) cycle. Understanding the response of particular processes in marine food webs to changing environments is a prerequisite to predict changes in ecological functioning in the future ocean. Here, we experimentally assessed the effects of nitrogen:phosphorus (N:P) supply ratios (the molar ratios 10:1, 24:1, and 63:1) on elemental and biochemical quality of marine phytoplankton Rhodomonas sp., and the interactions between food quantity and quality on stoichiometric C:N:P, fatty acids (FAs) and reproductions in copepods Acartia tonsa. Overall, the stoichiometry of A. tonsa was to some extent homeostatic in response to the changing algal C:N and C:P ratios, with significant changes in C:N ratios of A. tonsa observed, especially under higher food quantities. The relative gross growth efficiencies (GGEs) for C and N (and P) were analyzed, revealing that copepods may achieve homeostasis by lowering the GGE for C while increasing it for the limiting nutrient. Egg production rates in A. tonsa were lowest on nutrient deficient diets under low food quantities. Reduced egg production rates may be attributed to the lowered GGEs for C and reduced transfer efficiency of essential FAs between phytoplankton and copepods, indicating interactive-essential effects of elements and FAs on copepod production. Our results highlight that nutrient deficiency in the environments may reduce energy transfer efficiency at the base of food webs by altering phytoplankton chemical composition, which can interact with food quantity and have implications on food web dynamics in the changing ocean.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-02-08
    Description: The Thessaloniki Bay is a eutrophic coastal area which has been characterized in recent years by frequent and intense phytoplankton blooms and red tides. The aim of the study was to investigate the underexplored diversity of marine unicellular eukaryotes in four different sampling sites in Thessaloniki Bay during a year of plankton blooms, red tides, and mucilage aggregates. High-Throughput Sequencing (HTS) was applied in extracted DNA from weekly water samples targeting the 18S rRNA gene. In almost all samples, phytoplankton blooms and/or red tides and mucilage aggregates were observed. The metabarcoding analysis has detected the known unicellular eukaryotic groups frequently observed in the Bay, dominated by Bacillariophyta and Dinoflagellata, and revealed taxonomic groups previously undetected in the study area (MALVs, MAST, and Cercozoa). The dominant OTUs were closely related to species known to participate in red tides, harmful blooms, and mucilage aggregates. Other OTUs, present also during the blooms in low abundance (number of reads), were closely related to known harmful species, suggesting the occurrence of rare taxa with potential negative impacts on human health not detectable with classical microscopy. Overall, the unicellular eukaryote assemblages showed temporal patterns rather than small-scale spatial separation responding to the variability of physical and chemical factors.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...