GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Frontiers  (2)
  • Inter Research  (2)
  • Wiley-Blackwell  (1)
Publikationsart
Erscheinungszeitraum
  • 1
    facet.materialart.
    Unbekannt
    Inter Research
    In:  Marine Ecology Progress Series, 204 . pp. 27-38.
    Publikationsdatum: 2018-05-09
    Beschreibung: Generalisations on the combined effects of consumers and resources on autotrophs in aquatic food webs largely rely on freshwater studies. In this study, we tested these general concepts with marine benthic microalgae, which are important components of coastal food webs. We manipulated nitrogen availability and herbivore presence in a factorial field experiment in the Western Baltic Sea. Moreover, we investigated how herbivore control varied among 3 sites and 2 seasons and tested for trophic cascades by enhancing demersal fish density at 2 sites. Nitrogen availability and herbivore presence had strong and antagonistic effects on microalgal biomass, species composition and diversity. Herbivores significantly reduced algal biomass, whereas nutrient enrichment led to an increase in biomass. Herbivore effects on microalgal biomass increased with increasing nitrogen availability, indicating a functional response of herbivores to nutrient enrichment. The response of microalgae at the species level suggested a trade-off between nutrient use and grazing resistance which appeared to be linked to algal growth form. Compared to other growth forms, large erect species were most responsive to both nitrogen loading and herbivory. Grazing reduced microalgal diversity at low nutrient supply, but enhanced it at high nutrient supply. Herbivore effects varied considerably among different sites and were stronger in spring than in summer. Manipulations of fish density during summer did not have any effects on microalgal community structure. In conclusion, our results demonstrate that herbivores and nutrients have strong and balancing effects on marine microbenthic community structure.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    Inter Research
    In:  Marine Ecology Progress Series, 243 . pp. 57-66.
    Publikationsdatum: 2019-09-23
    Beschreibung: The combined and interactive effects of climatic and ecological factors are rarely considered in marine communities. We designed a factorial field experiment to analyze (1) the interactive effects of ambient UV radiation and consumers; and (2) the effects of photosynthetically active radiation (PAR 400 to 700 nm), UVA (320 to 400 nm) and UVB (280 to 320 nm) radiation on a marine hard-bottom community in Nova Scotia, NW Atlantic. Species recruitment and succession on ceramic tiles were followed for 5 mo. We found strong negative UV effects on biomass and cover of the early colonizing macroalga Pilayella littoralis, whereas UVB was more harmful than UVA radiation. Consumers, mainly gammarid amphipods, increased P. littoralis biomass when UV was excluded, probably through fertilization. These initially strong and interacting UV and consumer effects on total biomass and cover diminished as species succession progressed. Species diversity was not affected by experimental treatments, but significant shifts in species composition occurred, especially at the recruitment stage. Red algae were most inhibited by UV, whereas sedentary invertebrates and some brown algae tended to increase under UV exposure. Consumers suppressed green and filamentous brown algae, but favored the other groups. Again, these effects diminished during the later stages of succession. We conclude that UV radiation can be a significant structuring force in early successional benthic communities, and that consumers can mediate its effects.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2023-02-08
    Beschreibung: Considerable effort is being deployed to predict the impacts of climate change and anthropogenic activities on the ocean's biophysical environment, biodiversity, and natural resources to better understand how marine ecosystems and provided services to humans are likely to change and explore alternative pathways and options. We present an updated version of EcoOcean (v2), a spatial-temporal ecosystem modeling complex of the global ocean that spans food-web dynamics from primary producers to top predators. Advancements include an enhanced ability to reproduce spatial-temporal ecosystem dynamics by linking species productivity, distributions, and trophic interactions to the impacts of climate change and worldwide fisheries. The updated modeling platform is used to simulate past and future scenarios of change, where we quantify the impacts of alternative configurations of the ecological model, responses to climate-change scenarios, and the additional impacts of fishing. Climate-change scenarios are obtained from two Earth-System Models (ESMs, GFDL-ESM2M, and IPSL-CMA5-LR) and two contrasting emission pathways (RCPs 2.6 and 8.5) for historical (1950-2005) and future (2006-2100) periods. Standardized ecological indicators and biomasses of selected species groups are used to compare simulations. Results show how future ecological trajectories are sensitive to alternative configurations of EcoOcean, and yield moderate differences when looking at ecological indicators and larger differences for biomasses of species groups. Ecological trajectories are also sensitive to environmental drivers from alternative ESM outputs and RCPs, and show spatial variability and more severe changes when IPSL and RCP 8.5 are used. Under a non-fishing configuration, larger organisms show decreasing trends, while smaller organisms show mixed or increasing results. Fishing intensifies the negative effects predicted by climate change, again stronger under IPSL and RCP 8.5, which results in stronger biomass declines for species already losing under climate change, or dampened positive impacts for those increasing. Several species groups that win under climate change become losers under combined impacts, while only a few (small benthopelagic fish and cephalopods) species are projected to show positive biomass changes under cumulative impacts. EcoOcean v2 can contribute to the quantification of cumulative impact assessments of multiple stressors and of plausible ocean-based solutions to prevent, mitigate and adapt to global change.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2017-01-31
    Beschreibung: Destructive macroalgal mass blooms threaten estuarine and coastal ecosystems worldwide. We asked which factors regulate macroalgal bloom intensity, distribution and species composition. In field experiments in the Baltic Sea, we analyzed the relative effects of nutrients, herbivores and algal propagule banks on population development and dominance patterns in two co-occurring bloom-forming macroalgae, Enteromorpha intestinalis and Pilayella littoralis. Both species were highly affected by the combined effects of a propagule bank, herbivory and nutrients. The magnitude of effects varied with season. The propagule bank was an important overwintering mechanism for both algae, and allowed for recruitment two months earlier than recruitment via freshly dispersed propagules. This provided a seasonal escape from intense herbivory and nutrient limitation later in the year. Favored by massive recruitment from the propagule bank, Enteromorpha was the superior space occupier in early spring, thereby reducing recruitment of Pilayella. Elimination of the propagule bank and recruitment via freshly dispersed propagules favored Pilayella. Strong and selective herbivory on Enteromorpha supported Pilayella in the presence, but not in the absence of the propagule bank. Nutrient enrichment in summer counteracted herbivore pressure on Enteromorpha, thereby negatively affecting Pilayella. Herbivore and nutrient effects were more pronounced for early life stages than adult algae. These results show that recruitment processes and forces affecting early life stages at the beginning of the vegetation period determine development and dominance patterns of macroalgal blooms. Herbivores naturally suppress blooms but increasing nutrient enrichment can override this important control mechanism. The propagule bank plays a previously unrecognized role for population and community dynamics.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2024-04-09
    Beschreibung: Despite management efforts, anthropogenic nutrient enrichments continue to enhance phytoplankton blooms worldwide. Release of nitrogen and phosphorus compounds not only provides surplus of nutrients but also disbalances their stoichiometry. Declines in the relative availability of dissolved silicon might induce limitation in diatoms, major primary producers with silicified shells. We studied experimentally how nutrient enrichment and resulting decline in dissolved silicon to nitrogen ratios (Si:N) affect the structure and functioning of natural plankton communities. Nitrate was added to create a range of Si:N ratios and phosphate was supplied in Redfield ratio to nitrogen. We also manipulated copepod abundance to understand the top-down effects on communities experiencing nutrient enrichment. Nitrogen and phosphorus additions resulted in a steep phytoplankton biomass increase, followed by a post-bloom decline. Phytoplankton bloom biomass was higher in high nitrogen treatments but during the post-bloom period this trend switched. Biomass was sustained longer in high Si:N treatments, indicating that silicon limitation terminates the bloom. Many diatom species did not benefit from nitrogen and phosphorus enrichment and diatom dominance ceased below Si:N of 0.4:1. Under high grazing pressure, silicate was taken up faster suggesting that silicification is important in diatom defense. Copepods shaped plankton communities via feeding on dinoflagellates, chlorophytes and the diatom Skeletonema costatum but there was no significant effect of nitrogen and phosphorus enrichment on copepod abundance. Our results, combined with previous studies, show that while nutrient concentrations define the total phytoplankton bloom biomass, resource ratios are important in sustaining biomass and determining community structure and composition.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...