GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    GEOMAR
    In:  GEOMAR, Kiel, Germany, 2 pp.
    Publication Date: 2020-09-02
    Description: Maria S. Merian - MSM94 - SNAP Westlicher Subpolarer Atlantik 02.08.2020 - 06.09.2020
    Type: Report , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    GEOMAR
    In:  GEOMAR, Kiel, Germany, 2 pp.
    Publication Date: 2020-09-02
    Description: MSM94 – Maria S. Merian - SNAP Westlicher Subpolarer Atlantik 02.08.2020 - 06.09.2020
    Type: Report , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    GEOMAR
    In:  GEOMAR, Kiel, Germany, 2 pp.
    Publication Date: 2020-09-02
    Description: Maria S. Merian - MSM94 - SNAP Westlicher Subpolarer Atlantik 02.08.2020 - 06.09.2020
    Type: Report , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    GEOMAR
    In:  GEOMAR, Kiel, Germany, 2 pp.
    Publication Date: 2020-09-02
    Description: Maria S. Merian - MSM94 - SNAP Westlicher Subpolarer Atlantik 02.08.2020 - 06.09.2020
    Type: Report , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    GEOMAR
    In:  GEOMAR, Kiel, Germany, 2 pp.
    Publication Date: 2020-09-02
    Description: Maria S. Merian - MSM94 - SNAP Westlicher Subpolarer Atlantik 02.08.2020 - 06.09.2020
    Type: Report , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
  • 7
    Publication Date: 2020-02-06
    Description: Nitrous oxide (N2O) is a powerful greenhouse gas principally produced by nitrification and denitrification in the marine environment. Observations were made in the eastern South Pacific (ESP), between 10° and 60°S, and ~75°–88°W, from intermediate waters targeting Antarctic Intermediate Water (AAIW) at potential density of 27.0–27.1 kg m−3. Between 60° and 20°S, a gradual equatorward increase of N2O from 8 to 26 nmol L−1 was observed at density 27.0–27.1 kg m−3 where AAIW penetrates. Positive correlations were found between apparent N2O production (ΔN2O) and O2 utilization (AOU), and between ΔN2O and NO−3, which suggested that local N2O production is predominantly produced by nitrification. Closer to the equator, between 20° and 10°S at AAIW core, a strong N2O increase up to 75 nmol L−1 was observed. Because negative correlations were found between ΔN2O vs. NO−3 and ΔN2O vs. N* (a Nitrogen deficit index) and because ΔN2O and AOU do not follow a linear trend, we suspect that, in addition to nitrification, denitrification also takes place in N2O cycling. By making use of water mass mixing analyses, we show that an increase in N2O occurs in the region where high oxygen from AAIW merges with low oxygen from Equatorial Subsurface Water (ESSW), creating favorable conditions for local N2O production. We conclude that the non-linearity in the relationship between N2O and O2 is a result of mixing between two water masses with very different source characteristics, paired with the different time frames of nitrification and denitrification processes that impact water masses en route before they finally meet and mix in the ESP region.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-02-08
    Description: Cold-water coral communities form complex benthic ecosystems in a distinct part of the water column. The exact processes supporting reef growth and changes with time are still partly unsolved. Recent studies have suggested a tidally driven hydraulic control of flow over topographic features as a driver for local downwelling at cold-water coral sites. This mechanism forms a link between surface and coral growth depths and is a driver of resuspension of the bottom material. Only few studies have concentrated on how these processes vary with the health status and structure of the cold-water coral occurrences. In this study, we explore the processes over tidal cycles by analysing in situ stratification, hydrography and velocity data which we then combine with local topography from seven Lophelia pertusa dominated eastern Atlantic cold-water coral sites. The “quality” of coral sites varies from thriving reefs to declining and dead coral sites. We show that living and healthy corals are concentrated at sites, where local hydrodynamics create overturning and mixing which support food supply for filter-feeding corals.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-27
    Description: Oct. 07 2019 – Oct. 10, 2019 Kiel (Germany) – Kiel (Germany) MNF-Pher-110The main purpose of the ALKOR cruise AL529 was the training of students in observational techniques applied by physical oceanographers. The students who participated in the trip attend the module "Measurement Methods of Oceanography" which is offered in the Bachelor program "Physics of the Earth System" at CAU Kiel. During the AL529 the students were instructed in instrument calibration and in the interpretation of measurement data at sea. In addition, the students had the opportunity to learn about working and living at sea and to explore and study the impact of physical processes in the western Baltic Sea, the sea at their doorstep. The observations show a quasi-synoptic picture of the hydrography and currents in the western Baltic Sea. Twice-repeated hydrographic and current sections across the Fehmarn Belt show well the short time scales where significant changes occur. A zonal section along the deepest topography, from about 10°40'E to 014°21'E, shows very nicely the two-layer system of outflowing low salinity and inflowing North Sea water. A bottom shield anchorage shows the currents in the water column and the near-bottom temperature and salinity variations in the Fehmarnbelt area.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-01-31
    Description: Considerable advances in the global ocean observing system over the last two decades offers an opportunity to provide more quantitative information on changes in heat and freshwater storage. Variations in these storage terms can arise through internal variability and also the response of the ocean to anthropogenic climate change. Disentangling these competing influences on the regional patterns of change and elucidating their governing processes remains an outstanding scientific challenge. This challenge is compounded by instrumental and sampling uncertainties. The combined use of ocean observations and model simulations is the most viable method to assess the forced signal from noise and ascertain the primary drivers of variability and change. Moreover, this approach offers the potential for improved seasonal-to-decadal predictions and the possibility to develop powerful multi-variate constraints on climate model future projections. Regional heat storage changes dominate the steric contribution to sea level rise over most of the ocean and are vital to understanding both global and regional heat budgets. Variations in regional freshwater storage are particularly relevant to our understanding of changes in the hydrological cycle and can potentially be used to verify local ocean mass addition from terrestrial and cryospheric systems associated with contemporary sea level rise. This White Paper will examine the ability of the current ocean observing system to quantify changes in regional heat and freshwater storage. In particular we will seek to answer the question: What time and space scales are currently resolved in different regions of the global oceans? In light of some of the key scientific questions, we will discuss the requirements for measurement accuracy, sampling, and coverage as well as the synergies that can be leveraged by more comprehensively analysing the multi-variable arrays provided by the integrated observing system.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...