GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-08-22
    Description: Total alkalinity (TA) is one of the few measurable quantities that can be used together with other quantities to calculate concentrations of species of the carbonate system (CO2, HCO3 −, CO32−, H+, OH−). TA and dissolved inorganic carbon (DIC) are conservative quantities with respect to mixing and changes in temperature and pressure and are, therefore, used in oceanic carbon cycle models. Thus it is important to understand the changes of TA due to various biogeochemical processes such as formation and remineralization of organic matter by microalgae, precipitation and dissolution of calcium carbonate. Unfortunately deriving such changes from the common expression for TA in terms of concentrations of on-conservative chemical species (HCO3 −, CO3 2 −, B(OH)4 −, H+, OH−, etc.) is rarely obvious. Here an expression for TA (TAec) in terms of the total concentrations of certain major ions (Na+, Cl−, Ca2+ etc.) and the total concentrations of various acid-base species (total phosphate etc.) is derived from Dickson's original definition of TA under the constraint of electroneutrality. Changes of TA by various biogeochemical processes are easy to derive from this so-called explicit conservative expression for TA because each term in this expression is independent of changes of temperature or pressure within the ranges normally encountered in the ocean and obeys a linear mixing relation. Further, the constrains of electroneutrality for nutrient uptake by microalgae and photoautotrophs are discussed. A so-called nutrient-H+-compensation principle is proposed. This principle in combination with TAec allows one to make predictions for changes in TA due to uptake of nutrients that are consistent with observations. A new prediction based on this principle is the change in TA due to nitrogen fixation followed by remineralization of organic matter and subsequent nitrification of ammonia which implies a significant sink of TA in tropical and subtropical regions where most of the nitrogen fixation takes place.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-01-30
    Description: Throughout the last similar to 900 kyr, the Late Pleistocene, Earth has experienced periods of cold glacial climate, punctuated by seven abrupt transitions to warm interglacials, the so-called terminations. Although most of glacial ice is located in the Northern Hemisphere (NH), the Southern Hemisphere (SH) seems to play a crucial role in deglaciation. Variation in the seasonal distribution of solar insolation is one candidate for the cause of these climatic shifts. But so far, no simple mechanism has been identified. Here we present a mathematical analysis of variations in midsummer insolation in both hemispheres at 65 degrees latitude. Applying this analysis to the entire Pleistocene, the last 2 Myr, we find that prior to each termination the insolation in both hemispheres increases in concert, with a SH lead. Introducing time and energy thresholds to these overlaps, calculated times for the onsets of the seven terminations by this insolation canon (exceptional overlaps meeting the two threshold prerequisites) are similar to 23, 139, 253, 345, 419, 546 and 632 kyr BP, perfectly matching the geologic record. The timing originates from the interplay between the two orbital parameters obliquity and precession, explaining why terminations occur at integer multiple of the precessional cycle. There is no such constellation between I and 2 Myr BP, the Early Pleistocene, in agreement with Earth's climate at that time. This change in orbital forcing coincides with the Mid Pleistocene Revolution, separating the Late from the Early Pleistocene. Therefore, we hypothesize that the insolation canon is the trigger for glacial terminations. (c) 2006 Elsevier B.V. All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-04-03
    Description: Harde (2017) proposes an alternative accounting scheme for the modern carbon cycle and concludes that only 4.3% of today's atmospheric CO2 is a result of anthropogenic emissions. As we will show, this alternative scheme is too simple, is based on invalid assumptions, and does not address many of the key processes involved in the global carbon cycle that are important on the timescale of interest. Harde (2017) therefore reaches an incorrect conclusion about the role of anthropogenic CO2 emissions. Harde (2017) tries to explain changes in atmospheric CO2 concentration with a single equation, while the most simple model of the carbon cycle must at minimum contain equations of at least two reservoirs (the atmosphere and the surface ocean), which are solved simultaneously. A single equation is fundamentally at odds with basic theory and observations. In the following we will (i) clarify the difference between CO2 atmospheric residence time and adjustment time, (ii) present recently published information about anthropogenic carbon, (iii) present details about the processes that are missing in Harde (2017), (iv) briefly discuss shortcoming in Harde's generalization to paleo timescales, (v) and comment on deficiencies in some of the literature cited in Harde (2017).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-11-24
    Description: Paleocene-Eocene sedimentary archives record a series of global warming events called hyperthermals. These events occurred across a long-term increasing temperature trend and were associated with light carbon injections that produced carbon isotope excursions (CIEs). Early Eocene hyperthermals occurred close to both long (∼405 kyr) and short (∼100 kyr) eccentricity maxima. It has been proposed that under long-term global warming, orbital forcing of climate crossed a thermodynamic threshold that destabilized carbon reservoirs and produced Early Eocene hyperthermals. However, orbital control on triggering of the largest hyperthermal, the Paleocene-Eocene Thermal Maximum (PETM), remains unclear. Identification of the precise orbital phasing of the PETM has been hindered by extensive calcium carbonate (CaCO3) dissolution, which introduces uncertainty into PETM age models. Here, we report orbital signatures in marine sediments from Contessa Road (Italy), a western Tethyan section with reduced PETM CaCO3dissolution compared to other deep ocean sites. Orbitally controlled lysocline depth adjustments and orbital phasing of the PETM CIE onset close to both long and short eccentricity maxima are documented here. Precession-based age models from the well-resolved PETM section of Ocean Drilling Program (ODP) Site 1262 (South Atlantic) confirm these results and reveal that the PETM CIE onset was partially triggered by an orbitally controlled mechanism. Climate processes associated with orbital forcing of both long and short eccentricity maxima played an important role in triggering the carbon cycle perturbations of all Paleocene-Eocene CIE events.
    Description: Published
    Description: 117839
    Description: OSA2: Evoluzione climatica: effetti e loro mitigazione
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...