GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-09-23
    Description: Favourable sea-ice conditions gave way to an acoustic survey offshore NE Greenland during RV Polarstern ARK-XXIV/3 leg in 2009. The acquired data set clearly depicts sediment ridges in an area of app. 18 × 9 km. The ridges are found in water depths between 270 and 350 m. The sediment ridges are 2.5–9 km long, 50–250 m wide and 5–25 m high. In profile, most of these ridges are characterized by steep slopes towards Northwest and gentle slopes towards Southeast. Their internal structure, imaged by parametric echo-sounding data, shows that they are positive sedimentation features rather than erosive remnant structures. Arcuate shape, joint orientation and position on a basal till are indicative for end moraines. Because they are positioned within the Westwind Trough on a basal till that extends further east, we consider these ridges end moraines of the Westwind ice stream reported by Evans et al. (2009), Marine geophysical evidence for former expansion and flow of the Greenland Ice Sheet across the north-east Greenland continental shelf. Journal of Quaternary Science (2008), doi: 10.1002/jqs.1231.). Based on our hydro-acoustic data, we interpret these end moraines to be formed by short-lived re-advances during an overall recession of the ice margin. However, they could also be deposited during halts of the grounding line (comparable to De Geer moraines) though their morphological characteristics are slightly different from most published De Geer moraines. The ages for the moraine deposition can be inferred from a thin sedimentary drape indicating timing between Lateglacial and early Holocene. This set of end moraines is direct evidence for a dynamic behaviour of the marine-based ice stream during the last deglaciation on the NE Greenland shelf.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-08-04
    Description: Integrated interpretation of multi-beam bathymetric, sediment-penetrating acoustic (PARASOUND) and seismic data show a multiple slope failure on the northern European continental margin, north of Spitsbergen. The first slide event occurred during MIS 3 around 30 cal. ka BP and was characterised by highly dynamic and rapid evacuation of ca. 1250 km3 of sediment from the lower to the upper part of the continental slope. During this event, headwalls up to 1600 m high were created and ca. 1150 km3 material from hemi-pelagic sediments and from the lower pre-existing trough mouth fan has been entrained and transported into the semi-enclosed Sophia Basin. This megaslide event was followed by a secondary evacuation of material to the Nansen Basin by funnelling of the debris through the channel between Polarstern Seamount and the adjacent continental slope. The main slide debris is overlain by a set of fining-upward sequences as evidence for the associated suspension cloud and following minor failure events. Subsequent adjustment of the eastern headwalls led to failure of rather soft sediments and creation of smaller debris flows that followed the main slide surficial topography. Discharge of the Hinlopen ice stream during the Last Glacial Maximum and the following deglaciation draped the central headwalls and created a fan deposit of glacigenic debris flows.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...