GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-02-08
    Description: Highlights • Application of mobile underwater in situ gamma-ray spectroscopy. • Localization of pockmarks emanating groundwater. • Radon progeny 214Bi proved an efficient radiotracer for localization purposes. • Potassium 40K is suggested as additional to radon radiotracers to localize fluid emanation areas whenever sediment is in mixture with the fluid or resuspension of sediment occurs. Abstract Eckernförde Bay in the Baltic Sea is well-known for the pockmarks areas which are located in the centre and off the southern shore-line of the bay emanating groundwater in a non-continuous but episodic way. Mobile underwater in situ gamma-ray spectroscopy is exploited proving that both 214Bi and 40K are efficient radiotracers for localization of seepage areas whenever either sediment is in mixture with the emanating fluid or resuspension of surface sediment occurs as a side effect of the fluid emanation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-08-08
    Description: The sediments at a site situated among high-temperature vents in the Grimsey Graben (Tjornes Fracture Zone, north of Iceland) exhibit features of strong hydrothermal alteration: (1) almost total dissolution of the volcaniclastic material composing the background sediment; (2) sulfate and sulfide precipitation; (3) kaolinitisation. Smectite, precipitated in the shallowest sediment, is gradually replaced downward by mixed-layer kaolinite/smectite and pure, well-crystallised kaolinite. The kaolinite/smectite is interstratified with up to 10% swelling smectitic layers. According to the oxygen isotope composition kaolinite/smectite mixed-layer mineral most likely formed at temperatures near 160 degrees C. The vertical sequence kaolinite -〉 kaolinite/smectite -〉 smectite as well as the distinct zonation across the kaolinitic veins (almost pure kaolinite in the central zone and kaolinite/smectite along the rim) suggest hydrothermal transformation of initially formed smectite -〉 kaolinite/smectite -〉 kaolinite. Most probably this conversion occurred in an evolving (from alkaline to slightly acidic) hydrothermal environment. (c) 2004 Elsevier B.V. All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-11-23
    Description: Highlights • Mega ebullition of biogenic methane from an abandoned offshore gas well, North Sea. • Evidence for midwater bubble plume intrusion, fallback, and short-circuiting of the plume. • Effective trapping of seabed released methane underneath the thermocline. • First observation of a spiral vortex methane plume and marginal turbulences. • Megaplumes appear less efficient in terms of vertical methane transport than previously thought. Abstract First direct evidence for ongoing gas seepage activity on the abandoned well site 22/4b (Northern North Sea, 57°55′ N, 01°38′ E) and discovery of neighboring seepage activity is provided from observations since 2005. A manned submersible dive in 2006 discovered several extraordinary intense seepage sites within a 60 m wide and 20 m deep crater cut into the flat 96 m deep seafloor. Capture and (isotope) chemical analyses of the gas bubbles near the seafloor revealed in situ concentrations of methane between 88 and 90%Vol. with δ13C–CH4 values around −74‰ VPDB, indicating a biogenic origin. Bulk methane concentrations throughout the water column were assessed by 120 Niskin water samples showing up to 400.000 nM CH4 in the crater at depth. In contrast, concentrations above the thermocline were orders of magnitude lower, with a median value of 20 nM. A dye tracer injection into the gas seeps revealed upwelling bubble and water motion with gas plume rise velocities up to ∼1 ms−1 (determined near the seabed). However, the dissolved dye did not pass the thermocline, but returned down to the seabed. Measurements of direct bubble-mediated atmospheric flux revealed low values of 0.7 ± 0.3 kty−1, much less than current state-of-the-art bubble dissolution models would predict for such a strong and upwelling in situ gas bubble flux at shallow water depths (i.e. ∼100 m). Acoustic multibeam water column imaging data indicate a pronounced 200 m lateral intrusion at the thermocline together with high methane concentration at this layer. A partly downward-orientated bubble plume motion is also visible in the acoustic data with potential short-circuiting in accordance to the dye experiment. This observation could partly explain the observed trapping of most of the released gas below the well-established thermocline in the North Sea. Moreover, 3D analyses of the multibeam water column data reveal that the upwelling plume transforms into a spiral expanding vortex while rising through the water column. Such a spiral vortex motion has never been reported before for marine gas seepage and might represent an important process with strong implication on plume dynamics, dissolution behavior, gas escape to the atmosphere, and is considered very important for respective modeling approaches.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-03-06
    Description: Hydrocarbon seeps are ubiquitous at gas-prone Cenozoic deltas such as the Nile Deep Sea Fan (NDSF2) where seepage into the bottom water has been observed at several mud volcanoes (MVs3) including North Alex MV (NAMV4). Here we investigated the sources of hydrocarbon gases and sedimentary organic matter together with biomarkers of microbial activity at four locations of NAMV to constrain how venting at the seafloor relates to the generation of hydrocarbon gases in deeper sediments. At the centre, high upward flux of hot (70 °C) hydrocarbon-rich fluids is indicated by an absence of biomarkers of Anaerobic Oxidation of Methane (AOM) and nearly constant methane (CH4) concentration depth-profile. The presence of lipids of incompatible thermal maturities points to mixing between early-mature petroleum and immature organic matter, indicating that shallow mud has been mobilized by the influx of deep-sourced hydrocarbon-rich fluids. Methane is enriched in the heavier isotopes, with values of δ13C∼−46.6‰VPDB and δD ∼−228‰VSMOW, and is associated with high amounts of heavier homologues (C2+) suggesting a co-genetic origin with the petroleum. On the contrary at the periphery, a lower but sustained CH4 flux is indicated by deeper sulphate–methane transition zones and the presence of 13C-depleted biomarkers of AOM, consistent with predominantly immature organic matter. Values of δ13C-CH4∼−60‰VPDB and decreased concentrations of 13C-enriched C2+ are typical of mixed microbial CH4 and biodegraded thermogenic gas from Plio-Pleistocene reservoirs of the region. The maturity of gas condensate migrated from pre-Miocene sources into Miocene reservoirs of the Western NDSF is higher than that of the gas vented at the centre of NAMV, supporting the hypothesis that it is rather released from the degradation of oil in Neogene reservoirs. Combined with the finding of hot pore water and petroleum at the centre, our results suggest that clay mineral dehydration of Neogene sediments, which takes place posterior to reservoir filling, may contribute to intense gas generation at high sedimentation rate deltas.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: In order to investigate how submarine weathering processes may affect the water balance of sediments at convergent plate margins, six sediment cores were retrieved off Central Chile at water depth between ∼800 and 4000 m. The sediment solid phase was analyzed for its major element composition and the pore fluids were analyzed for dissolved sulfate, sulfide, total alkalinity, major cations, chloride, bromide, iodide, hydrocarbons as well as the carbon isotopic composition of methane. Because of negligible weathering on land, surface sediments off Central Chile are rich in reactive silicate minerals and have a bulk composition similar to volcanic rocks in the adjacent Andes. Deep-sourced fluxes of alkalinity, cations and chloride indicate that silicate minerals are subject to weathering in the forearc during burial. Comparison of deep-sourced signals with data from nearby Ocean Drilling Program Sites reveals two different types of weathering processes: In shallow (tens of meters), methanic sediments of slope basins with high organic carbon burial rates, reactive silicate minerals undergo incongruent dissolution through reaction with CO2 from methanogenesis. At greater burial depth (hundreds of meters), silicate weathering is dominated by authigenic smectite formation. This process is accompanied by uptake of water into the clay interlayers thus leading to elevated salinities in the surrounding pore water. Deep-seated smectite formation is more widespread than shallow silicate dissolution, as it is independent from the availability of CO2 from methanogenesis. Although solute transport is not focused enough to form cold seeps in the proper sense, tectonically induced, diffuse fluid flow transfers the deep-seated signal of smectite formation into the shallow sediments. The temperature-controlled conversion of smectite to illite is considered the most important dehydration process in marine forearc environments (depth of kilometers). However, in agreement with other studies at active margins (e.g. Aleutians, Cascadia, Nankai Trough) and despite ubiquitous evidence for smectite formation, little evidence for seafloor seepage of dehydration fluids could be found off Central Chile. We argue that the circular process of pore water uptake during smectite formation and release upon illitization implies a balanced freshwater budget and therefore a rather limited potential for net pore water freshening on a margin-wide scale. According to this rationale, pore water freshening at seafloor seeps preferentially occurs at lower latitudes (Central America, Barbados, Mediterranean Ridge) where terrestrial weathering is more intense thus leading to external (i.e. detrital) smectite and thus freshwater inputs to the subduction system.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-23
    Description: Magnesium calcites were synthesized from aqueous solutions supersaturated with respect to calcite at 25, 40, 60, and 80 °C in gas tight batch reactors for up to 35 days. Any amorphous material still present in the precipitates was removed using a partial dissolution treatment. Resulting purified Mg-calcite had Mg contents ranging from 6 to 32 mol% MgCO3. An isotopic steady-state was attained between the fluid and the precipitated solids within two weeks at 25 °C. δ18O values derived from the experiments at steady-state, depend on both temperature and the Mg content of the calcite in accord with: 1000lnαMg-calcite–H2O=18,030/T−32.42+(6×108/T3–5.47×106/T2+16,780/T−17.21)×CMg where αMg-calcite–H2O represents the calcite–water oxygen isotope fractionation factor, T refers to the temperature in °K and CMg denotes the mole percent of MgCO3 in the calcite. These results indicate that the addition of 5 mol% MgCO3 into the calcite increases 1000lnαMg-calcite–H2O by 0.88 as compared to that of pure calcite at 25 °C. This difference could lead to a 4.2 °C decrease in estimated formation temperature estimates. These results demonstrate that the accurate interpretation of oxygen isotope fractionation in magnesium calcites requires explicit provision for the effect of magnesium on oxygen isotope fractionation factors. Highlights ► The effect of Mg on calcite–aqueous fluid oxygen isotope fractionation was investigated. ► Mg incorporation is increasing the calcite–aqueous fluid oxygen isotope fractionation. ► This effect is reduced at higher temperatures. ► Obtained results are important for paleo-temperature estimation. Gadget timed out while loading
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-23
    Description: Carbonate chimney-like deposits up to 60 m high are scattered or arranged in rows at the shores of a desiccating hypersaline and alkaline lake from a continental rift setting (Lake Abhé, Afar Rift, Djibouti). The chimneys formed sub-aqueously in the lake water body at a higher water level than observed today. Alternating calcite and low-Mg calcite + silica concentric layers compose the chimney structures. Mineralogical and geochemical investigations of the chimneys, lake water, and hot spring (hydrothermal) fluids suggest that the chimneys are a result of rapid carbonate precipitation during the mixing of hydrothermal fluids with lake water. In contrast to the hot spring fluid, lake water is enriched in HREE and possesses a pronounced positive Ce anomaly, features that are preserved in the carbonate chimney layers. Mixing calculations based on Sr-isotope and concentration data indicate a hydrothermal fluid contribution of ~ 45% in the chimney interior, which decreases to ~ 4% in the external chimney layer. Sr in the hydrothermal fluids is predominantly leached from the underlying volcanic rocks, whereas the lake's Sr budget is dominated by riverine input. Considering the fluid mixing ratios calculated by Sr-data, the measured C and O isotope compositions indicate that chimney carbonates precipitated at temperatures between 14 °C (internal part) and 22 °C (external part) with δ13C-carbonate mainly controlled by isotope equilibrium exchange of lake water with atmospheric CO2. The low-Mg calcite layers, including the outermost layer, have enhanced signals of lake water inheritance based on elevated concentrations of immobile elements, ΣREE, and Sr and Ca isotope compositions. Ca-isotope data reveal that internal chimney layers formed by non-equilibrium calcite precipitation with a predominantly hydrothermal Ca source. The external low-Mg calcite layer received Ca contributions from both hydrothermal fluid and lake water, with the latter being the dominant Ca source. Highly positive δ44/40Ca of lake water likely reflects non-equilibrium Ca-carbonate precipitation during lake water evaporation with resulting 44Ca enrichment of residual lake water. The strong degree of 44Ca enrichment may point towards multiple lake drying and Ca-reservoir depletion events. Coupled C–O–Ca-isotope data of the sampled carbonate chimney suggest late-stage (low-temperature) hydrothermal carbonate chimney formation during strongly evaporative lake conditions at the time of low-Mg calcite precipitation. U–Th age dating suggests that the chimneys formed no earlier than 0.82 kyr BP (0.28 ± 0.54).
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-09-23
    Description: Diffuse and focused low-temperature fluids emanate at 9°33′S (Mid-Atlantic Ridge) and precipitate Fe–Sioxyhydroxides that form chimneys, mounds and flat-lying deposits. This extensive vent field, named Lilliput, lies at the axial zone of a spreading segment with a significantly thickened crust (~11 km). Theoretically much more heat needs to be removed from a thick-crust spreading center compared to a spreading center with typical thickness of ~6 km. Therefore, settings with thickened crust should be favourable for supporting very powerful hydrothermal systems capable of producing large mineral deposits. This is the first report on the composition of seafloor hydrothermal deposits at abnormally thickened oceanic crust due to hotspot–ridge interaction. Our studies revealed that generally the Lilliput hydrothermal deposits are very similar in morphology, structure, composition and lateral extent to other low-temperature hydrothermal deposits of mid-ocean ridges and intraplate volcanoes. Deposits at the Lilliput vent field are composed of Si-containing goethite and ferrihydrite, have very low contents of a number of transition and rare earth elements and show REE distribution patterns with negative Ce and Eu anomalies. The speciation and precipitation of the main deposit-forming elements, Fe and Si, at the hydrothermal field appear to be partially controlled by live microbes and exuded organic compounds. The δ18O values of the precipitated silica-containing Feoxyhydroxides point to low-temperature formation and Sr–Nd–Pb–isotope variations suggest that the hydrothermal precipitates scavenged metals predominantly from the ambient seawater. These findings are in agreement with the biogeochemical scenario for their precipitation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Elsevier
    In:  Earth and Planetary Science Letters, 193 (3-4). pp. 409-421.
    Publication Date: 2017-08-09
    Description: The results of a combined geophysical and geochemical research program are presented that focused on Grimsey hydrothermal field (GHF) which is located at 66 degrees 35'30"N, 17 degrees 39'30"W east of the island of Grimsey in the Tjornes Fracture Zone. The vent field is situated at the sourthernmost tip of a submarine ridge which is connected to the offshore part of the Theistareykir Fissure Swarm. Reflection seismic recordings were interpreted in conjunction with earthquake catalogue data to detect active fault structures and potential heat sources in the subsurface. An inter-linked fracture network forming a downwards converging system of faults connected to a deep-reaching normal fault is assumed to provide the preferential pathways for gases (He-3, CO2, CH4 etc.) migrating from a possible deep-seated gas source (lower crust/upper mantle) to the surface. The location of hydrothermal vents was detected by concentration measurements of dissolved methane in the water column, which coincide with polarity reversals in the seismic seafloor reflection. Both the molecular composition of the gas and the isotopic composition of methane at GHF indicate a predominating abiogenic source (Fischer-Tropsch reactions at 250-500 degreesC) mixed with thermogenic hydrocarbons. New seismic data from the GHF were compared with gas geochemical data which indicate that the thermogenic hydrocarbons are related to (up to 60 m thick) sediments deposited in a basin located east of the ridge.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-11-23
    Description: Highlights: • MIMS used to quantify the dissolved CH4 inventory around a bubble emission site. • Conservative estimate of well 22/4b seabed CH4 emission was 1.8 ktons yr−1. • Stratification impedes immediate CH4 release into the atmosphere. The dissolved methane (CH4) plume rising from the crater of the blowout well 22/4b in the Central North Sea was mapped during stratified water column conditions. Geochemical surveys were conducted close to the seafloor at 80.3 m water depth, below the thermocline (61.1 m), and in the mixed surface layer (13.2 m) using membrane inlet mass spectrometry (MIMS) in combination with a towed CTD. Seawater was continuously transferred from the respective depth levels of the CTD to the MIMS by using an inline submersible pump. Close to the seafloor a well-defined CH4 plume extended from the bubble release site ∼460 m towards the southwest. Along this distance CH4 concentrations decreased from a maximum of 7872 nmol l−1 to less than 250 nmol l−1. Below the thermocline the well-defined CH4 plume shape encountered at the seafloor was distorted and filaments were observed that extended towards the west and southwest in relation to current direction. Where the core of the bubble plume intersected this depth layer, footprints of high CH4 concentrations of up to 17,900 nmol l−1 were observed. In the mixed surface layer the CH4 distribution with a maximum of up to 3654 nmol l−1 was confined to a small patch of ∼60 m in diameter. The determination of the water column CH4 inventories revealed that CH4 transfer across the thermocline was strongly impeded as only ∼3% of the total water column inventory was located in the mixed surface layer. Best estimate of the CH4 seabed release from the blowout was 1751 tons yr−1. The fate of the trapped CH4 (∼97%) that does not immediately reach the atmosphere remains speculative. In wintertime, when the water column becomes well mixed as well as during storm events newly released CH4 and the trapped CH4 pool can be transported rapidly to the sea surface and emitted into the atmosphere.
    Type: Article , PeerReviewed
    Format: text
    Format: video
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...