GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (2)
Document type
Publisher
Years
  • 1
    Publication Date: 2017-08-04
    Description: Detailed exploration with remotely operated and autonomous deep submergence vehicles has revealed, at 9 degrees 33'S, the presence of the southernmost active hydrothermal field known so far on the Mid-Atlantic Ridge. The size of the hydrothermal field, which we have named "Lilliput", is about 1000 m x 250 m. It lies in a water depth of 1500 m on a ridge segment (Segment A3) with considerably thickened crust of 11 km. Four relatively small diffuse vent sites occur on a large young (estimated 〈100 years old) lava flow, partly covering the flow with hydrothermal Fe-oxide/hydroxide sediments. Based on homogeneous major element compositions of ca. 25 lava samples, this flow covers an area of at least 5 km x 0.6 km. The lava flow erupted from a series of parallel fissures at the western edge of the flow and a volcanic ridge consisting of up to 30 m high pillow mounds. The volcanic ridge probably represents the surface expression of an underlying dike which fed the flow. Several drained lava pond structures were observed within the flow but only one shows hydrothermal activity. The hydrothermal venting and precipitation of abundant Fe-oxyhydroxides appear to be related to the young diking and eruption event and the four different hydrothermally active sites of the Lilliput field lie along and almost equidistant from the eastern flank of the supposed dike. Although a hydrothermal plume some 500 m above the seafloor was found in two consecutive years (2005 and 2006), no high-temperature venting associated with Lilliput has been found. in agreement with findings at other ridges with thick crust such as Reykjanes. High magma supply rate and frequent diking and eruption events may lead to hot hydrothermal vents being rare in slow-spreading segments with thick crust whereas diffuse venting is abundant. Interestingly, the fauna at the Lilliput vents largely consists of small and apparently juvenile mussels (Bathymodiolus sp.) and did not show any signs of growth during the four years of continuing observations possibly reflecting pulsing hydrothermal activity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-11-01
    Description: The water column imprint of the hydrothermal plume observed at the Nibelungen field (8 18'S 13 degrees 30'W) is highly variable in space and time. The off-axis location of the site, along the southern boundary of a non-transform ridge offset at the joint between two segments of the southern Mid-Atlantic Ridge, is characterized by complex, rugged topography, and thus favorable for the generation of internal tides, subsequent internal wave breaking, and associated vertical mixing in the water column. We have used towed transects and vertical profiles of stratification, turbidity, and direct current measurements to investigate the strength of turbulent mixing in the vicinity of the vent site and the adjacent rift valley, and its temporal and spatial variability in relation to the plume dispersal. Turbulent diffusivities K(rho) were calculated from temperature inversions via Thorpe scales. Heightened mixing (compared to open ocean values) was observed in the whole rift valley within an order of K(rho) around 10(-3) m(2) s(-1). The mixing close to the vent site was even more elevated, with an average of K(rho) = 4 x 10(-2) m(2) s(-1). The mixing, as well as the flow field, exhibited a strong tidal cycle, with strong currents and mixing at the non-buoyant plume level during ebb flow. Periods of strong mixing were associated with increased internal wave activity and frequent occurrence of turbulent overturns. Additional effects of mixing on plume dispersal include bifurcation of the particle plume, likely as a result of the interplay between the modulated mixing strength and current speed, as well as high frequency internal waves in the effluent plume layer, possibly triggered by the buoyant plume via nonlinear interaction with the elevated background turbulence or penetrative convection. (C) 2010 Elsevier Ltd. All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...