GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-01-18
    Description: Mid-ocean ridge basalts (MORBs) are the most abundant eruptive tholeiitic products on Earth. Many experiments have been performed to investigate the solidification of basalts but under limited thermal ranges of cooling (ΔTc) and cooling rates (ΔT/Δt). We analyze the experimental charges solidified from previous studies: the BIR1A basalt from USGS was solidified using ΔT/Δt of 1, 7, 60, 180, 1800 and 9000 °C/h, in the ΔTc between 1300 and 800 °C, at atmospheric conditions. The previous studies allowed determining the glass-forming ability (GFA) of sub-alkaline silicate liquids, but do not give information on their textures. Here, we quantify the evolution of sizes, shapes, number of crystals per area (#/A), CSDs and growth rates (Gs) of plg (plagioclase), cpx (clinopyroxene) and sp. (spinel). Textures were investigated by image analysis on thousands of crystals and are one of the most complete datasets ever obtained from laboratory studies: they reflect rapid, intermediate and sluggish cooled parts of MORB from liquidus to solidus. Faceted plg grows only at ΔT/Δt ≤ 60 °C/h, while cpx and sp. became dendritic at ΔT/Δt between 60 and 180 °C/h. As ΔT/Δt increase, crystal size ranges decrease from 1000 to 10 μm at 1 °C/h to 100–1 at 60 °C/h μm for plg, from 400 to 8 μm at 1 °C/h to 25–0.5 μm at 1800 °C/h μm for cpx, and from 90 to 6 μm at 1 °C/h to 6–0.5 at 1800 °C/h μm, for sp. The #/A increases with increasing ΔT/Δt, except for cpx between 60 and 180 °C/h. As ΔT/Δt increases, CSDs of plg, cpx and sp increase their slopes (m) and population densities per size (n0), reduce the size ranges and tend to be log-linear. At low ΔT/Δt, CSDs are composed of several log-linear segments, which slopes are related to different pulses of crystal nucleation, and subsequent growth by coarsening. The CSDs parameters (slope, m, and nucleation density per size, n0) linearly scale each other and both are highly correlated with ΔT/Δt. Maximum (Gmax) and average (GCSD) growth rates are computed respectively by averaged major axis (Lmax) of the five longest crystals and by the m of CSDs. Both the Gs are a function of experimental time (t) and increase with the increasing of ΔT/Δt, changing up to two orders of magnitude. The Gmax of cpx is correlated with m and n0 and can be used in natural MORB to retrieve either ΔT/Δt and Gmax. The plg and cpx crystals with sizes between 0.1 and 1 mm are abundant in the experimental charges obtained at low ΔT/Δt. In volcanic rocks, these crystal sizes are generally considered representative of intra-telluric conditions (phenocrysts and microphenocrysts). Our data demonstrate that crystals with mm-sizes may also grow in syn-topost- depositional conditions. The continuous evolution of textures in response to ΔT/Δt variations implies that kinetic effects can fully capture the solidification of MORBs. As a result, the widely accepted assumption that phenocrysts represent the products of evolution processes in volcanic conduits or magma reservoirs could be not valid for some basaltic lavas.
    Description: Published
    Description: 103165
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-03-16
    Description: In this study we present the compositional changes of clinopyroxene (cpx), plagioclase (plg), spinel (sp), and glass experimentally solidified from an Icelandic MORB melt. The starting material was cooled at Patm and fO2 of air, in the thermal range of cooling (ΔTc) between 1300 °C (superliquidus) to 800 °C (solidus) with rates (ΔT/Δt) of 1, 7, 60, 180, 1800, and 9000 °C/h. The run products obtained at 1, 7 and 60 °C/h are holocrystalline, whilst between 60 and 180 °C/h plg disappears, and texture of cpx + sp. shifts from faceted to dendritic. As cooling rate increases, we observe that Fe2O3 decreases and Al2O3 increases in sp. and Al2O3 + Fe2O3 increase and CaO + MgO decrease in cpx. These measured variations mirror changes induced by cooling rate in cation (atoms per formula unit, a.p.f.u.) and molecular abundances of these two crystalline phases. Plg composition shows clear linear trends versus cooling rate. The chemistry of sp., cpx and, to a minor extent, plg solidified from this basaltic liquid is thus strictly related to the cooling rate condition and is similar to those observed in previous investigations on alkaline and evolved basaltic systems. In particular, cpx is the only mineral phase profusely present at all the cooling rates, showing the greatest chemical variations in terms of oxides, cations, and components. The intra-crystalline glass (≤ 50 μm from crystal rims) obtained at 180–1800 °C/h shows compositional variations related to the surrounding crystal growth, evidencing strong supersaturation phenomena (such as dendritic texture) due to the establishment of a diffusion-controlled growth regime. Chemical attributes of mineral phases are also quantitatively related with the maximum (Gmax) and average (GCSD) growth rates of sp., cpx, and plg. When compared with the starting melt composition, the chemistry of cpx suggests the attainment of near-equilibrium crystallization conditions at cooling rate ≤ 60 °C/h, whereas disequilibrium effects are found at cooling rate 〉 60 °C/h. In contrast, plg is in disequilibrium with the initial melt chemistry in all experiments. By using thermometric models, the calculated crystallization of plg takes place at temperatures much lower than those of cpx, when the crystal content is high and the diffusion of cations in the melt is slow due to the higher (residual) melt viscosity. Under such conditions and due to the effect of cooling, the system cannot return to homogeneous concentrations and, consequently, plg more effectively records the disequilibrium partitioning of cations between the growing crystal surface. The data-set reported here captures the entire (superliquidus to solidus) and intrinsic (heterogeneous site-free silicate liquid) solidification behavior from an actual MORB melt from very rapid to extremely sluggish cooling rate. Finally, all analytical relationships found in this work enable careful reconstruction of the solidification conditions of MORB melts, providing novel geo-speedometers for them at high fO2.
    Description: Published
    Description: 120765
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...