GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (1)
  • Wiley Agu  (1)
Document type
Keywords
Publisher
Years
  • 1
    Publication Date: 2015-09-24
    Description: Highlights: • Comprehensive morphological, seismic, sedimentological, and geotechnical data sets. • Dynamic CPTU provides a powerful, time- and cost-efficient in situ technique. • Development of a regional sub-seafloor strength model offshore Nice airport. • 2D finite element slope stability assessment gives slope failure depth of 〉 50 m. Abstract: In the landslide-prone area near the Nice international airport, southeastern France, an interdisciplinary approach is applied to develop realistic lithological/geometrical profiles and geotechnical/strength sub-seafloor models. Such models are indispensable for slope stability assessments using limit equilibrium or finite element methods. Regression analyses, based on the undrained shear strength (su) of intact gassy sediments are used to generate a sub-seafloor strength model based on 37 short dynamic and eight long static piezocone penetration tests, and laboratory experiments on one Calypso piston and 10 gravity cores. Significant strength variations were detected when comparing measurements from the shelf and the shelf break, with a significant drop in su to 5.5 kPa being interpreted as a weak zone at a depth between 6.5 and 8.5 m below seafloor (mbsf). Here, a 10% reduction of the in situ total unit weight compared to the surrounding sediments is found to coincide with coarse-grained layers that turn into a weak zone and detachment plane for former and present-day gravitational, retrogressive slide events, as seen in 2D chirp profiles. The combination of high-resolution chirp profiles and comprehensive geotechnical information allows us to compute enhanced 2D finite element slope stability analysis with undrained sediment response compared to previous 2D numerical and 3D limit equilibrium assessments. Those models suggest that significant portions (detachment planes at 20 m or even 55 mbsf) of the Quaternary delta and slope apron deposits may be mobilized. Given that factors of safety are equal or less than 1 when further considering the effect of free gas, a high risk for a landslide event of considerable size off Nice international airport is identified.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-05-12
    Description: On natural faults that host repeating slip events, the inter‐event loading time is quite large compared to the slip event duration. Since most friction studies focus on steady‐state frictional behavior, the fault loading phase is not typically examined. Here, we employ a method specifically designed to evaluate fault strength evolution during active loading, under shear driving rates as low as 10−10 m/s, on natural fault gouge samples from the Waikukupa Thrust in southern New Zealand. These tests reveal that in the early stages of loading following a slip event, there is a period of increased stability, which fades with accumulated slip. In the framework of rate‐ and state‐dependent friction laws, this temporary stable phase exists as long as slip is less than the critical slip distance and the elapsed time is less than the value of the state variable at steady state. These observations indicate a minimum earthquake recurrence time, which depends on the field value of the critical slip distance and the background slip rate. We compare estimates of minimum earthquake recurrence times with the recurrence times of repeating large earthquakes on the Alpine Fault in southern New Zealand and repeating small‐magnitude earthquakes on the San Andreas Fault system in California. We find that the observed recurrence times are mostly longer than the predicted minimum values, and exceptions in the San Andreas system may be explained by elevated slip rates due to larger earthquakes in this region.
    Description: Deutsche Forschungsgemeinschaft via MARUM Research Centre/Cluster of Excellence (grants FZT15, EXC309, and IK 107/3‐1) and from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement 714430) to M. I.
    Description: Published
    Description: e2020JB020015
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: Friction ; Fault ; Earthquake physics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...