GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Global Biogeochemical Cycles, 31 (8). pp. 1256-1270.
    Publication Date: 2021-04-21
    Description: Based on an unprecedented dissolved barium (D_Ba) data set collected in the Mediterranean Sea during a zonal transect between the Lebanon coast and Gibraltar (M84/3 cruise, April 2011), we decompose the D_Ba distribution to isolate the contribution of biogeochemical processes from the impact of the oceanic circulation. We have built a simple parametric water mass analysis (Parametric Optimum Multiparameter analysis) to reconstruct the contribution of the different Mediterranean water masses to the thermohaline structure. These water mass fractions have then been used to successfully reconstruct the background vertical gradient of D_Ba reflecting the balance between the large-scale oceanic circulation and the biological activity over long time scales. Superimposed on the background field, several D_Ba anomalies have been identified. Positive anomalies are associated with topographic obstacles and may be explained by the dissolution of particulate biogenic barium (P_Ba barite) of material resuspended by the local currents. The derived dissolution rates range from 0.06 to 0.21 μmol m−2 d−1. Negative anomalies are present in the mesopelagic region of the western and eastern basins (except in the easternmost Levantine basin) as well as in the abyssal western basin. This represents the first quantification of the nonconservative component of the D_Ba signal. These mesopelagic anomalies could reflect the subtraction of D_Ba during P_Ba barite formation occurring during organic carbon remineralization. The deep anomalies may potentially reflect the transport of material toward the deep sea during winter deep convection and the subsequent remineralization. The D_Ba subtraction fluxes range from −0.07 to −1.28 μmol m−2 d−1. D_Ba-derived fluxes of P_Ba barite (up to 0.21 μmol m−2 d−1) and organic carbon (13 to 29 mmol C m−2 d−1) are in good agreement with other independent measurements suggesting that D_Ba can help constrain remineralization horizons. This study highlights the importance of quantifying the impact of the large-scale oceanic circulation in order to better understand the biogeochemical cycling of elements and to build reliable geochemical proxies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-04-21
    Description: Anthropogenic activities have resulted in enhanced lead (Pb) emissions to the environment over the past century, mainly through the combustion of leaded gasoline. Here, we present the first combined dissolved (DPb), labile (LpPb) and particulate (PPb) Pb dataset from the Northeast Atlantic (Celtic Sea) since the phasing out of leaded gasoline in Europe. Concentrations of DPb in surface waters have decreased by 4-fold over the last four decades. We demonstrate that anthropogenic Pb is transported from the Mediterranean Sea over long distances (〉2500 km). Benthic DPb fluxes exceeded the atmospheric Pb flux in the region, indicating the importance of sediments as a contemporary Pb source. A strong positive correlation between DPb, PPb and LpPb indicates a dynamic equilibrium between the phases and the potential for particles to ‘buffer’ the DPb pool. This study provides insights into Pb biogeochemical cycling and demonstrates the potential of Pb in constraining ocean circulation patterns.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-04-21
    Description: The South China Sea (SCS) is the largest semienclosed marginal sea in the western Pacific (WP) and connects to the west Pacific through the Luzon Strait (LU). In this study, we use the observation of transient tracer chlorofluorocarbon‐12 (CFC‐12) to calculate the ventilation time scales of the SCS, LU, and WP. The CFC‐12 and oxygen data are used together to identify the sandwiched structure vertically of the flows across the LU. The CFC‐12 and oxygen distributions reveal a pronounced decrease westward across the LU and a slight decrease southward in the transport of the SCS. The mean age gradient of the salinity minimum (Smin) water between the WP and the northern SCS could be a consequence of intensive mixing and entrainment of the inflow water from the WP. An expected difference in age between the LU and SSCS is verified to reflect the transit time for the given water layers in the SCS. Thus, a mean transit time of 77 ± 20 years is estimated for the intermediate water in the SCS interior.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-04-21
    Description: The Southern Ocean is the most important area of anthropogenic carbon (Cant) uptake in the world ocean, only rivalled in importance by the North Atlantic Ocean. Significant variability on decadal time-scales in the uptake of Cant in the Southern Ocean has been observed and modelled, likely with consequences for the interior ocean storage of Cant in the region, and implications for the global carbon budget. Here we use eight cruises between 1973 and 2012 to assess decadal variability in Cant storage rates in the southeast Atlantic sector of the Southern Ocean. For this we employed the extended multiple linear regression (eMLR) method. We relate variability in DIC (dissolved inorganic carbon) storage, which is assumed to equal anthropogenic carbon storage, to changes in ventilation as observed from repeat measurements of transient tracers. Within the Antarctic Intermediate Water (AAIW) layer, which is the dominant transport conduit for Cant into the interior ocean, moderate Cant storage rates were found without any clear temporal trend. In Subantarctic Mode Water (SAMW), a less dense water mass found north of the Subantarctic Front and above AAIW, high storage rates of Cant were observed up to about 2005 but lower rates in more recent times. The transient tracer data suggest a significant speed-up of ventilation in the summer warmed upper part of AAIW between 1998 and 2012, which is consistent with the high storage rate of Cant. A shift of more northern Cant storage to more southern storage in near surface waters was detected in the early 2000s. Beneath the AAIW the eMLR method as applied here did not detect significant storage of Cant. However, the presence of the transient tracer CFC-12 all through the water column suggests that some Cant should be present, but at concentrations not reliably quantifiable. The observed temporal variability in the interior ocean seems at a first glance to be out of phase with observed surface ocean Cant fluxes, but this can be explained by the time delay for the surface ocean signal to manifest itself in the interior of the ocean.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part I: Oceanographic Research Papers, 67 . pp. 85-97.
    Publication Date: 2019-09-23
    Description: The transit time distribution method was applied to dichlorodifluoromethane and sulfur hexafluoride measurements from four cruises to the tropical North Atlantic between 2006 and 2009 in order to estimate anthropogenic carbon (C-ant) concentrations. By assuming an Inverse Gaussian distribution of the transit time distribution the best fit to the data was achieved with the ratio of mean age to width equals 1. Significant differences in the mean age and C-ant concentrations between the equatorial belt (5 degrees S-5 degrees N) and the Guinea dome area (5 degrees-15 degrees N) was found. Mean ages are higher and C-ant concentrations are lower in the Guinea dome area than at same depths, or densities, in the equatorial belt. The mean column inventories in the upper 1200 m are higher by about 3 mol m(-2) in the equatorial belt compared to the Guinea dome area. The mean column inventory of C-ant, for the whole water column, in the tropical Atlantic is 32.2 mol m(-2) (error range: 30.6-45.2 mol m(-2)), which is significantly lower than the previous estimates. The total C-ant inventory in the eastern tropical Atlantic is 2.5 Pg (error range: 2.3-3.5 Pg) for an area of 6 x 10(6) km(2), comprising the Guinea dome region and the equatorial belt. The equatorial belt has 40% higher storage of C-ant compared to the Guinea dome area which reflects the occurrence of relatively young deep waters at the equator, being high in anthropogenic carbon. Our tracer based C-ant estimates were compared to C-ant concentrations calculated with the TrOCA method applied to measurements conducted in 1999. The TrOCA based estimates are significantly higher than our tracer based C-ant estimates. Comparison between tracer measurements in 1999 and the 2006-2009 time-frame revealed possible speed-up of ventilation in the upper water column, increasing the C-ant concentration in this depth range at a faster rate and a C-ant increase of 12.1 mu mol kg(-1) in the tropical surface water was found
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 40 (5). pp. 927-932.
    Publication Date: 2021-04-21
    Description: Transient tracer measurements can constrain the rates and pathways of ocean ventilation and act as proxies for biogeochemically relevant gases such as CO2 and oxygen. Various techniques have deduced changes in ocean ventilation over decadal timescales using transient tracer measurements made on repeat sections, but these require a priori assumptions about mixing in the ocean interior. Here, we introduce a simple, direct observational method that takes advantage of the similar atmospheric increase rates of chlorofluorocarbon-12 and sulfur hexafluoride, but with a time lag (offset) of 1415 years. Such repeat measurements can be directly compared without prior assumptions about mixing. A difference larger than similar to 2 years between modern sulfur hexafluoride and historical chlorofluorocarbon-12 tracer ages implies a change in ventilation, although lack of difference does not necessarily imply no change. Several tracer data sets are presented, which suggest changes in ventilation in the South Pacific and North Atlantic Oceans.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-04-21
    Description: During the last decade, two important collections of carbon relevant hydrochemical data have become available: GLODAP and CARINA. These collections comprise a synthesis of bottle data for all ocean depths from many cruises collected over several decades. For a majority of the cruises at least two carbon parameters were measured. However, for a large number of stations, samples or even cruises, the carbonate system is under-determined (i.e., only one or no carbonate parameterwas measured) resulting in data gaps for the carbonate system in these collections. A method for filling these gaps would be very useful, as it would help with estimations of the anthropogenic carbon (Cant) content or quantification of oceanic acidification. The aim of this work is to apply and describe, a 3D moving window multilinear regression algorithm (MLR) to fill gaps in total alkalinity (AT) of the CARINA and GLODAP data collections for the Atlantic. In addition to filling data gaps, the estimated AT values derived from the MLR are useful in quality control of the measurements of the carbonate system, as they can aid in the identification of outliers. For comparison, a neural network algorithm able to performnon-linear predictionswas also designed. The goal herewas to design an alternative approach to accomplish the sametask of filling AT gaps. Bothmethods return internally consistent results, thereby giving confidence in our approach. Highlights: ► Estimation of alkalinity by multilinear regression (MLR) techniques ► Estimation of alkalinity by neural network techniques ► Intercomparison between alkalinity prediction techniques ► Use of Alkalinity estimation for carbon calculations ► Use of alkalinity estimation for quality control of measurements
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part I: Oceanographic Research Papers, 68 . pp. 79-91.
    Publication Date: 2019-09-23
    Description: The accumulation of anthropogenic CO2 in the oceans is altering seawater carbonate chemistry. Investigation and monitoring of the carbonate parameters is therefore necessary to understand potential impacts on ocean ecosystems. Total alkalinity (AT) and dissolved inorganic carbon (CT) were sampled across the Rockall Trough in Feb 2009 (CE0903) and Feb 2010 (CE10002) as part of a baseline study of inorganic carbon chemistry in Irish shelf waters. The results have been compared with data from WOCE surveys A01E (Sept 1991), A01 (Dec 1994), AR24 (Nov 1996) and A24 (June 1997). The 2009 and 2010 datasets provide a snapshot of the biogeochemical parameters which can act as a baseline of inorganic carbon and acidity levels in surface waters of the Rockall Trough in late winter for future comparison since previous surveys in the area have been affected by biological activity. The dataset also offers the possibility to compare decadal changes in subsurface waters. The temporal evolution of anthropogenic carbon (Delta C-ant) between the 1990s and 2010 was evaluated using two separate methods; (i) a comparison of the concentrations of C-T between surveys, after correcting it for remineralisation of organic material and formation and dissolution of calcium carbonate (Delta CT-abio) and (ii) an extended Multiple Linear Regression was used to calculate the Delta C-ant (Delta C-ant(eMLR)). There was an increase in Delta CT-abio and Delta C-ant(eMLR) of 18 +/- 4 mu mol kg(-1) and 19 +/- 4 mu mol kg(-1), respectively, in the subsurface waters between 1991 and 2010, equivalent to a decrease of 0.040 +/- 0.003 pH units over the 19 year period. There was an increase in both Delta CT-abio and Delta C(ant)e(mLR) of 8 +/- 4 mu mol kg(-1) in Labrador Sea Water (LSW) in the Trough between 1991 and 2010, and LSW has acidified by 0.029 +/- 0.002 pH units over the same time period. A reduction in calcite and aragonite saturation states was observed, which may have implications for calcifying organisms in the region
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-04-21
    Description: Noble gas radionuclides, including 81Kr (t1/2 = 229,000 years), 85Kr (t1/2 = 10.8 years), and 39Ar (t1/2 = 269 years), possess nearly ideal chemical and physical properties for studies of earth and environmental processes. Recent advances in Atom Trap Trace Analysis (ATTA), a laser-based atom counting method, have enabled routine measurements of the radiokrypton isotopes, as well as the demonstration of the ability to measure 39Ar in environmental samples. Here we provide an overview of the ATTA technique, and a survey of recent progress made in several laboratories worldwide. We review the application of noble gas radionuclides in the geosciences and discuss how ATTA can help advance these fields, specifically: determination of groundwater residence times using 81Kr, 85Kr, and 39Ar; dating old glacial ice using 81Kr; and an 39Ar survey of the main water masses of the oceans, to study circulation pathways and estimate mean residence times. Other scientific questions involving a deeper circulation of fluids in the Earth's crust and mantle are also within the scope of future applications. We conclude that the geoscience community would greatly benefit from an ATTA facility dedicated to this field, with instrumentation for routine measurements, as well as for research on further development of ATTA methods.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-04-21
    Description: Highlights: • D_Ba is investigated along a high resolution and quasi-zonal transect in the MedSea. • The D_Ba content ranges from 38 to 85 nmol kg− 1 with local deep D_Ba maxima reaching up to 172 nmol kg− 1. • The water column is largely undersaturated with respect to barite (0.2 〈 SI 〈 0.6). • The D_Ba distribution is impacted by the large-scale Mediterranean circulation and biogeochemical processes. • Local changes in the D_Ba patterns may be the key to better constrain the C dynamics in the MedSea. Abstract: The dissolved barium (D_Ba) data set for the Mediterranean Sea is here expanded with data from a large-scale transect sampled in April 2011 (M84/3 cruise) at high resolution. A total of 833 seawater samples have been analyzed for D_Ba. Over the basin the D_Ba content ranges from 38 to 85 nmol kg− 1 with local deep D_Ba maxima reaching up to 172 nmol kg− 1. Deep D_Ba maxima are associated with near bottom waters influenced by benthic processes and brine waters. The water column is largely undersaturated with respect to barite (BaSO4, the main phase of particulate biogenic barium P_Ba), with water column barite saturation state ranging between 0.2 and 0.6 over the basin. This new D_Ba dataset shows that the general zonal distribution of D_Ba is impacted by the large-scale Mediterranean circulation, as evidenced by the Levantine Intermediate Water zonal and meridional progression as well as by the eastward flow of surface Atlantic Water. However biogeochemical processes are also at play, as suggested by an elevated D_Ba content of deep waters and by local lower D_Ba contents in intermediate waters. These features could be attributed to active cycling between the particulate and dissolved Ba phases. Since P_Ba barite has been recognized in previous studies as a proxy for particulate organic carbon remineralization at intermediate depths, the significance of local changes in the water column D_Ba patterns may be the key to better constrain the Ba and carbon dynamics in the Mediterranean Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...