GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-08-10
    Description: Highlights: • Belt Sea cod, plaice and flounder differentiate in their specific egg densities. • Ontogenetic egg density increase in stage IV cod eggs elevates modeled egg mortality. • Drift model indicates retention in western Baltic in cod and flatfish yolk sac larvae. • No eastward transport to Arkona Sea or Bornholm Sea until end of yolk sac stage. • Ambiguity in flounder egg density could reflect more complex population structure. Abstract: Vertical distribution is an important feature of pelagic fish eggs and yolk sac larvae impacting their survival and dispersal, especially in heterogeneous and highly variable estuarine environments like the Baltic Sea. Egg densities determining the vertical distribution pattern were experimentally ascertained for cod (Gadus morhua), plaice (Pleuronectes platessa) and flounder (Platichthys flesus) from the western Baltic Sea. Plaice eggs floated at lower mean (±standard deviation) density range (1.0136 ± 0.0007 g cm−3) compared to cod (1.0146 ± 0.0009 g cm−3) and flounder eggs (1.0160 ± 0.0015 g cm−3), which floated on the highest density level. In flounder egg diameter was significantly related to egg density and in cod a weak correlation could be found between egg dry weight and density. All other relationships between female size, egg size, egg dry weight and egg density were not significant for any of the species. Available egg density data for Baltic Sea cod, plaice and flounder are summarized considering ICES subdivisions and stock management units. A hydrodynamic drift modeling approach was applied releasing drifters in the Belt Sea continuously from December to May, covering the species’ spawning seasons. The model implemented experimentally derived egg density ranges and included ontogenetic egg density modifications for cod eggs, increasing egg density from a late egg development stage to first hatch. A drifter was removed from the model, i.e. considered dead, when its initially prescribed density value exceeded the density range available at the temporally resolved geographical positions along the drift trajectories. Highest survival occurred during releases in April and May but no cohorts survived if they were drifted east into the central Arkona Basin or the central Baltic Sea, irrespective of whether a major Baltic Inflow (1992/1993) or a stagnation-year (1987/1988) was simulated. The dispersal characteristics of the surviving yolk sac larvae of all three species reflected retention within the Belt Sea or northwards transport through the Great Belt into the Kattegat and partly into the Skagerrak. There was no successful transport to more eastern Baltic areas past a hypothetical line from the island of Moen (Denmark) to Kap Arkona on Rügen Island (Germany).
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-07-03
    Description: The Baltic Sea is characterised by a heterogeneous oceanographic environment. The deep water layers forming the habitat of Baltic cod (Gadus morhua callarias L.) are subjected to frequently occurring pronounced anoxic conditions. Adverse oxygen conditions result in physiological stress for organisms living under these conditions. For cod e.g. a direct relationship between oxygen availability and food intake with a decreasing ingestion rate at hypoxia could be revealed. In the present study, the effects of oxygen deficiency on consumption rates were investigated and how these translate to stock size estimates in multi-species models. Based on results from laboratory experiments, a model was fitted to evacuation rates at different oxygen levels and integrated into the existing consumption model for Baltic cod. Individual mean oxygen corrected consumption rates were 0.1–10.9% lower than the uncorrected ones. At the currently low predator stock size, however, the effect of oxygen-reduced consumption on the total amount of eaten prey biomass and thus predation mortalities was only marginal. But should successful management lead to higher cod stock sizes in the future, then total predation mortalities will greatly increase and thus improved precision of these estimates would be valuable for the assessment of prey stocks.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-03-06
    Description: Pseudocalanus elongatus is a key species in the pelagic zone of the deep basins of the Central Baltic Sea. The copepod serves as a major food organism for larval as well as for adult, pelagic planktivorous fish. Large interannual fluctuations in the standing stock of P. elongatus have been attributed to significant changes in the hydrographic environment over the last two decades. In particular, the decreasing salinity in the Baltic deep basins, a result of a change in atmospheric forcing leading to an increase in rainfall since the 1980s and of a lack of pulses of saline water intrusions from the North Sea, was found to affect reproduction and maturation of the copepod. In parallel, dramatic changes in the weight-at-age of herring, one of the most important commercial fishes of the Baltic Sea, have been observed since the late 1980s. Using time-series on herring stomach contents, as well as length and weight, we provide evidence for a chain of events relating variability in climate, salinity and P. elongatus abundance to changes in diet and condition of herring in the Central Baltic Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-07-12
    Description: Variations in oxygen conditions below the permanent halocline influence the ecosystem of the Baltic Sea through a number of mechanisms. In this study, we examine the effects of physical forcing on variations in the volume of deep oxygenated water suitable for reproductive success of central Baltic cod. Recent research has identified the importance of inflows of saline and oxygenated North Sea water into the Baltic Sea for the recruitment of Baltic cod. However, other processes have been suggested to modify this reproduction volume including variations in timing and volume of terrestrial runoff, variability of the solubility of oxygen due to variations in sea surface temperature as well as the influence of variations in wind stress. In order to examine the latter three mechanisms, we have performed simulations utilizing the Kiel Baltic Sea model for a period of a weak to moderate inflow of North Sea water into the Baltic, modifying wind stress, freshwater runoff and thermal inputs. The model is started from three-dimensional fields of temperature, salinity and oxygen obtained from a previous model run and forced by realistic atmospheric conditions. Results of this realistic reference run were compared to runs with modified meteorological forcing conditions and river runoff. From these simulations, it is apparent that processes other than major Baltic inflows have the potential to alter the reproduction volume of Baltic cod. Low near-surface air temperatures in the North Sea, the Skagerrak/Kattegat area and in the western Baltic influence the water mass properties (high oxygen solubility). Eastward oriented transports of these well-oxygenated highly saline water masses may have a significant positive impact on the Baltic cod reproduction volume in the Bornholm Basin. Finally, we analysed how large scale and local atmospheric forcing conditions are related to the identified major processes affecting the reproduction volume.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...