GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-02-01
    Description: The Fram Strait is the main gateway for water, heat and sea-ice exchanges between the Arctic Ocean and the North Atlantic. The complex physical environment results in a highly variable primary production in space and time. Previous regional studies have defined key bottom-up (ice cover and stratification from melt water controlling the light availability, and wind mixing and water transport affecting the supply of nutrients) and top-down processes (heterotrophic grazing). In this study, in situ field data, remote sensing and modeling techniques were combined to investigate in detail the influence of melting sea-ice and ocean properties on the development of phytoplankton blooms in the Fram Strait region for the years 1998–2009. Satellite-retrieved chlorophyll-a concentrations from temporarily ice-free zones were validated with contextual field data. These were then integrated per month on a grid size of 20 × 20 km, resulting in 10 grids/fields. Factors tested for their influence on spatial and temporal variation of chlorophyll-a were: sea-ice concentration from satellite and sea-ice thickness, ocean stratification, water temperature and salinity time-series simulated by the ice-ocean model NAOSIM. The time series analysis for those ten ice-free fields showed a regional separation according to different physical processes affecting phytoplankton distribution. At the marginal ice zone the melting sea-ice was promoting phytoplankton growth by stratifying the water column and potentially seeding phytoplankton communities. In this zone, the highest mean chlorophyll concentration averaged for the productive season (April–August) of 0.8 mgC/m3 was observed. In the open ocean the phytoplankton variability was correlated highest to stratification formed by solar heating of the upper ocean layers. Coastal zone around Svalbard showed processes associated with the presence of coastal ice were rather suppressing than promoting the phytoplankton growth. During the twelve years of observations, chlorophyll concentrations significantly increased in the southern part of the Fram Strait, associated with an increase in sea surface temperature and a decrease in Svalbard coastal ice.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE BV
    In:  EPIC3Polar Science, ELSEVIER SCIENCE BV, In Pre, pp. 1-17, ISSN: 1873-9652
    Publication Date: 2017-07-27
    Description: Numerical models face the challenge of representing the present-day spatiotemporal distribution of snow on sea ice realistically. We present modeled Arctic-wide snow depths on sea ice (hs_mod) obtained with the MITgcm configured with a single snow layer that accumulates proportionally to the thickness of sea ice. When compared to snow depths derived from radar measurements (NASA Operation IceBridge, 2009–2013), the model snow depths are overestimated on first-year ice (2.5 ± 8.1 cm) and multiyear ice (0.8 ± 8.3 cm). The large variance between model and observations lies mainly in the limitations of the model snow scheme and the large uncertainties in the radar measurements. In a temporal analysis, during the peak of snowfall accumulation (April), hs_mod show a decline between 2000 and 2013 associated to long-term reduction of summer sea ice extent, surface melting and sublimation. With the aim of gaining knowledge on how to improve hs_mod, we investigate the contribution of the explicitly modeled snow processes to the resulting hs_mod. Our analysis reveals that this simple snow scheme offers a practical solution to general circulation models due to its ability to replicate robustly the distribution of the large-scale Arctic snow depths. However, benefit can be gained from the integration of explicit wind redistribution processes to potentially improve the model performance and to better understand the interaction between sources and sinks of contemporary Arctic snow.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...