GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Deutsche Gesellschaft für Polarforschung; Alfred-Wegener-Institu für Polar- und Meeresforschung
    In:  Polarforschung, 81 (2). pp. 85-102.
    Publication Date: 2019-09-23
    Description: Large-scale features of Arctic Ocean temperature and salinity distributions observed during 2007-2009 are described and discussed in the context of historical observation in order to document long-term variations. Oceanographic observations carried out in the frame of the International Polar Year (IPY 2007/2008) demonstrated unique conditions in the Arctic Ocean and seas during that period. For example, analyses of upper ocean temperature and salinity patterns 2007-2009 revealed an apparent frontal zone separating the Eurasian and Canadian Basins. We found that after 2007 the temperature and salinity trends of the surface layer of the Arctic Ocean followed the same trajectory as in the past, however their regional distribution and intensity changed. The average salinity in the surface 5-50 m layer of the Eurasian Basin in winter of 2007-2009 was higher than in the 1950s and 1970s, but did not exceed the average salinity in the early 1990s. In the Canadian Basin, the upper ocean salinity in 2007-2009 was much lower than in the 1950s-1960s. Volumetric analysis of water masses demonstrated a general increase of volume of the intermediate (150-900 m depth range) Atlantic Water (AW) temperature, with substantial rise of the upper boundary of the AW. The thermal expansion of AW in the Arctic Basin is unique during the last 20 years. The most distinct variations of the hydrographic conditions were observed in the Canadian Basin. In general, the maximum of the AW temperature decreased in 2009 relative to 2007 and the upper boundary became shallower by 50 to 150 m the Eurasian Basin. The AW salinity in 2007-2009 was not exceptional during the IPY. Observations in the deeper layers indicated that the bottom waters have become slightly warmer and less saline.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-12-31
    Description: The thermohaline structure of the Arctic Basin (AB) of the Arctic Ocean (AO) is determined to a great extent by an intermediate water layer existing under ice at a depth varying from 100 to 700–1000 m. The water layer is formed by warm North Atlantic Water (AW), which enters the AB by two ways: through Fram Strait and the Barents Sea (Fig. 1). The AW arriving to the AB via Fram Strait extends further eastward along the continental slope of the Eurasian Arctic region and forms the Fram Branch (FBAW). The Barents Branch of the AW (BBAW) was formed by the North Atlantic Water entering the Barents Sea between the Spitsbergen Archipelago and the Scandinavian Peninsula. Both branches merge in the northern Kara Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-12-31
    Description: Introduction: In the last two decades, significant changes have occurred in the Arctic Ocean as well as in the entire Arctic region. The ice cover of Arctic seas, which was gradually (linearly) decreasing from the beginning of the 20th century to the end of it [1], began to shrink rapidly in the 1990s and in the 21st century [2]. Salinity variations in the upper layer changed sign in different regions [3]. The temperature of Atlantic waters in the Arctic basin started to increase. At the end of the 1990s, stabilization of Atlantic water transport to the Arctic Basin was observed [4], but starting from 2004, the temperature of Atlantic waters in the Eurasian sub-basin increased even more and reached values that had not been observed here previously [5]. In 2007, extreme summer processes in the Arctic that followed this increase and anomalous state of the ice cover and upper layer of the ocean that were formed by the beginning of autumn put forward a pressing problem to evaluate the variation in the thermohaline structure of the Arctic Ocean as a whole.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...