GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 10 (2013): 6225-6245, doi:10.5194/bg-10-6225-2013.
    Description: Ocean ecosystems are increasingly stressed by human-induced changes of their physical, chemical and biological environment. Among these changes, warming, acidification, deoxygenation and changes in primary productivity by marine phytoplankton can be considered as four of the major stressors of open ocean ecosystems. Due to rising atmospheric CO2 in the coming decades, these changes will be amplified. Here, we use the most recent simulations performed in the framework of the Coupled Model Intercomparison Project 5 to assess how these stressors may evolve over the course of the 21st century. The 10 Earth system models used here project similar trends in ocean warming, acidification, deoxygenation and reduced primary productivity for each of the IPCC's representative concentration pathways (RCPs) over the 21st century. For the "business-as-usual" scenario RCP8.5, the model-mean changes in the 2090s (compared to the 1990s) for sea surface temperature, sea surface pH, global O2 content and integrated primary productivity amount to +2.73 (±0.72) °C, −0.33 (±0.003) pH unit, −3.45 (±0.44)% and −8.6 (±7.9)%, respectively. For the high mitigation scenario RCP2.6, corresponding changes are +0.71 (±0.45) °C, −0.07 (±0.001) pH unit, −1.81 (±0.31)% and −2.0 (±4.1)%, respectively, illustrating the effectiveness of extreme mitigation strategies. Although these stressors operate globally, they display distinct regional patterns and thus do not change coincidentally. Large decreases in O2 and in pH are simulated in global ocean intermediate and mode waters, whereas large reductions in primary production are simulated in the tropics and in the North Atlantic. Although temperature and pH projections are robust across models, the same does not hold for projections of subsurface O2 concentrations in the tropics and global and regional changes in net primary productivity. These high uncertainties in projections of primary productivity and subsurface oxygen prompt us to continue inter-model comparisons to understand these model differences, while calling for caution when using the CMIP5 models to force regional impact models.
    Description: This work was supported by EU FP7 project CARBOCHANGE (under grant agreement No. 264879), EU FP7 project MEECE (under grant agreement No. 212085), EU FP7 project SOCCLI (under grant agreement No. 317699), and ANR project MACROES. S. C. Doney acknowledges the US National Science Foundation (AGS-1048827). This work has been supported by the Research Council of Norway through the EarthClim (207711/E10) and NOTUR/NorStore projects. M. Vichi acknowledges the support of the Italian Ministry of Education, University and Research and the Ministry for Environment, Land and Sea through the project GEMINA.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 12 (2015): 6955-6984, doi:10.5194/bg-12-6955-2015.
    Description: Past model studies have projected a global decrease in marine net primary production (NPP) over the 21st century, but these studies focused on the multi-model mean rather than on the large inter-model differences. Here, we analyze model-simulated changes in NPP for the 21st century under IPCC's high-emission scenario RCP8.5. We use a suite of nine coupled carbon–climate Earth system models with embedded marine ecosystem models and focus on the spread between the different models and the underlying reasons. Globally, NPP decreases in five out of the nine models over the course of the 21st century, while three show no significant trend and one even simulates an increase. The largest model spread occurs in the low latitudes (between 30° S and 30° N), with individual models simulating relative changes between −25 and +40 %. Of the seven models diagnosing a net decrease in NPP in the low latitudes, only three simulate this to be a consequence of the classical interpretation, i.e., a stronger nutrient limitation due to increased stratification leading to reduced phytoplankton growth. In the other four, warming-induced increases in phytoplankton growth outbalance the stronger nutrient limitation. However, temperature-driven increases in grazing and other loss processes cause a net decrease in phytoplankton biomass and reduce NPP despite higher growth rates. One model projects a strong increase in NPP in the low latitudes, caused by an intensification of the microbial loop, while NPP in the remaining model changes by less than 0.5 %. While models consistently project increases NPP in the Southern Ocean, the regional inter-model range is also very substantial. In most models, this increase in NPP is driven by temperature, but it is also modulated by changes in light, macronutrients and iron as well as grazing. Overall, current projections of future changes in global marine NPP are subject to large uncertainties and necessitate a dedicated and sustained effort to improve the models and the concepts and data that guide their development.
    Description: C. Laufkötter and the research leading to these results have received funding from the European Community’s Seventh Framework Programme (FP7 2007–2013) under grant agreements no. 238366 (Greencycles II) and 264879 (CarboChange). M. Vogt and N. Gruber acknowledge funding by ETH Zürich. S. C. Doney and I. D. Lima acknowledge support from NSF (AGS-1048827).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 13 (2016): 4023-4047, doi:10.5194/bg-13-4023-2016.
    Description: Accurate projections of marine particle export production (EP) are crucial for predicting the response of the marine carbon cycle to climate change, yet models show a wide range in both global EP and their responses to climate change. This is, in part, due to EP being the net result of a series of processes, starting with net primary production (NPP) in the sunlit upper ocean, followed by the formation of particulate organic matter and the subsequent sinking and remineralisation of these particles, with each of these processes responding differently to changes in environmental conditions. Here, we compare future projections in EP over the 21st century, generated by four marine ecosystem models under the high emission scenario Representative Concentration Pathways (RCP) 8.5 of the Intergovernmental Panel on Climate Change (IPCC), and determine the processes driving these changes. The models simulate small to modest decreases in global EP between −1 and −12 %. Models differ greatly with regard to the drivers causing these changes. Among them, the formation of particles is the most uncertain process with models not agreeing on either magnitude or the direction of change. The removal of the sinking particles by remineralisation is simulated to increase in the low and intermediate latitudes in three models, driven by either warming-induced increases in remineralisation or slower particle sinking, and show insignificant changes in the remaining model. Changes in ecosystem structure, particularly the relative role of diatoms matters as well, as diatoms produce larger and denser particles that sink faster and are partly protected from remineralisation. Also this controlling factor is afflicted with high uncertainties, particularly since the models differ already substantially with regard to both the initial (present-day) distribution of diatoms (between 11–94 % in the Southern Ocean) and the diatom contribution to particle formation (0.6–3.8 times higher than their contribution to biomass). As a consequence, changes in diatom concentration are a strong driver for EP changes in some models but of low significance in others. Observational and experimental constraints on ecosystem structure and how the fixed carbon is routed through the ecosystem to produce export production are urgently needed in order to improve current generation ecosystem models and their ability to project future changes.
    Description: The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7 2007-2013) under grant agreement no. 238366. Meike Vogt and Nicolas Gruber acknowledge funding by ETH Zürich. Judith Hauck was funded by the Helmholtz Post- Doc Programme (Initiative and Networking Fund of the Helmholtz Association). Scott C. Doney and Ivan D. Lima acknowledge the support of the National Science Foundation through the Center for Microbial Oceanography Research and Education (C-MORE), an NSF Science and Technology Center (EF-0424599).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geoscientific Model Development 10 (2017): 2169-2199, doi:10.5194/gmd-10-2169-2017.
    Description: The Ocean Model Intercomparison Project (OMIP) focuses on the physics and biogeochemistry of the ocean component of Earth system models participating in the sixth phase of the Coupled Model Intercomparison Project (CMIP6). OMIP aims to provide standard protocols and diagnostics for ocean models, while offering a forum to promote their common assessment and improvement. It also offers to compare solutions of the same ocean models when forced with reanalysis data (OMIP simulations) vs. when integrated within fully coupled Earth system models (CMIP6). Here we detail simulation protocols and diagnostics for OMIP's biogeochemical and inert chemical tracers. These passive-tracer simulations will be coupled to ocean circulation models, initialized with observational data or output from a model spin-up, and forced by repeating the 1948–2009 surface fluxes of heat, fresh water, and momentum. These so-called OMIP-BGC simulations include three inert chemical tracers (CFC-11, CFC-12, SF6) and biogeochemical tracers (e.g., dissolved inorganic carbon, carbon isotopes, alkalinity, nutrients, and oxygen). Modelers will use their preferred prognostic BGC model but should follow common guidelines for gas exchange and carbonate chemistry. Simulations include both natural and total carbon tracers. The required forced simulation (omip1) will be initialized with gridded observational climatologies. An optional forced simulation (omip1-spunup) will be initialized instead with BGC fields from a long model spin-up, preferably for 2000 years or more, and forced by repeating the same 62-year meteorological forcing. That optional run will also include abiotic tracers of total dissolved inorganic carbon and radiocarbon, CTabio and 14CTabio, to assess deep-ocean ventilation and distinguish the role of physics vs. biology. These simulations will be forced by observed atmospheric histories of the three inert gases and CO2 as well as carbon isotope ratios of CO2. OMIP-BGC simulation protocols are founded on those from previous phases of the Ocean Carbon-Cycle Model Intercomparison Project. They have been merged and updated to reflect improvements concerning gas exchange, carbonate chemistry, and new data for initial conditions and atmospheric gas histories. Code is provided to facilitate their implementation.
    Description: J. C. Orr and L. Bopp were supported by the EU H2020 CRESCENDO project (grant 641816). J. L. Bullister was supported by the NOAA Climate Program Office H. Graven was supported by an EU Marie Curie Career Integration Grant. A. Mouchet benefited from an EU H2020 Marie Curie project (grant 660893). R. G. Najjar was supported by NASA’s Ocean Biology and Biogeochemistry Program and NASA’s Interdisciplinary Science Program. F. Joos was supported by the Swiss National Science Foundation.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: © The Authors, 2010. This article is distributed under the terms of the Creative Commons Attribution 3.0 License. The definitive version was published in Biogeosciences 7 (2010): 621-640, doi:10.5194/bg-7-621-2010
    Description: Global climate change is predicted to alter the ocean's biological productivity. But how will we recognise the impacts of climate change on ocean productivity? The most comprehensive information available on its global distribution comes from satellite ocean colour data. Now that over ten years of satellite-derived chlorophyll and productivity data have accumulated, can we begin to detect and attribute climate change-driven trends in productivity? Here we compare recent trends in satellite ocean colour data to longer-term time series from three biogeochemical models (GFDL, IPSL and NCAR). We find that detection of climate change-driven trends in the satellite data is confounded by the relatively short time series and large interannual and decadal variability in productivity. Thus, recent observed changes in chlorophyll, primary production and the size of the oligotrophic gyres cannot be unequivocally attributed to the impact of global climate change. Instead, our analyses suggest that a time series of ~40 years length is needed to distinguish a global warming trend from natural variability. In some regions, notably equatorial regions, detection times are predicted to be shorter (~20–30 years). Analysis of modelled chlorophyll and primary production from 2001–2100 suggests that, on average, the climate change-driven trend will not be unambiguously separable from decadal variability until ~2055. Because the magnitude of natural variability in chlorophyll and primary production is larger than, or similar to, the global warming trend, a consistent, decades-long data record must be established if the impact of climate change on ocean productivity is to be definitively detected.
    Description: S. A. H. was supported by NASA grants NNG06GE77G and NNX07AL81G. J. L. S. and C. B. acknowledge support from the Carbon Mitigation Initiative funded by BP Amoco. S. C. D. and I. L. were supported by NSF grant EF-0424599. L. B. acknowledges support from the ANR-GlobPhy and FP7-MEECE projects.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 10 (2013): 2711-2724, doi:10.5194/bg-10-2711-2013.
    Description: Global climate change is expected to affect the ocean's biological productivity. The most comprehensive information available about the global distribution of contemporary ocean primary productivity is derived from satellite data. Large spatial patchiness and interannual to multidecadal variability in chlorophyll a concentration challenges efforts to distinguish a global, secular trend given satellite records which are limited in duration and continuity. The longest ocean color satellite record comes from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), which failed in December 2010. The Moderate Resolution Imaging Spectroradiometer (MODIS) ocean color sensors are beyond their originally planned operational lifetime. Successful retrieval of a quality signal from the current Visible Infrared Imager Radiometer Suite (VIIRS) instrument, or successful launch of the Ocean and Land Colour Instrument (OLCI) expected in 2014 will hopefully extend the ocean color time series and increase the potential for detecting trends in ocean productivity in the future. Alternatively, a potential discontinuity in the time series of ocean chlorophyll a, introduced by a change of instrument without overlap and opportunity for cross-calibration, would make trend detection even more challenging. In this paper, we demonstrate that there are a few regions with statistically significant trends over the ten years of SeaWiFS data, but at a global scale the trend is not large enough to be distinguished from noise. We quantify the degree to which red noise (autocorrelation) especially challenges trend detection in these observational time series. We further demonstrate how discontinuities in the time series at various points would affect our ability to detect trends in ocean chlorophyll a. We highlight the importance of maintaining continuous, climate-quality satellite data records for climate-change detection and attribution studies.
    Description: CB and JLS acknowledge financial support from the Carbon Mitigation Initiative with support from BP. JLS and RRR were partly supported by the NF-UBC Nereus Program. SAH was supported by NERC grant NE/G013055/1. SCD acknowledges support from NSF grant EF-0424599.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 11 (2014): 6955-6967, doi:10.5194/bg-11-6955-2014.
    Description: This study aims to evaluate the potential for impacts of ocean acidification on North Atlantic deep-sea ecosystems in response to IPCC AR5 Representative Concentration Pathways (RCPs). Deep-sea biota is likely highly vulnerable to changes in seawater chemistry and sensitive to moderate excursions in pH. Here we show, from seven fully coupled Earth system models, that for three out of four RCPs over 17% of the seafloor area below 500 m depth in the North Atlantic sector will experience pH reductions exceeding −0.2 units by 2100. Increased stratification in response to climate change partially alleviates the impact of ocean acidification on deep benthic environments. We report on major pH reductions over the deep North Atlantic seafloor (depth 〉500 m) and at important deep-sea features, such as seamounts and canyons. By 2100, and under the high CO2 scenario RCP8.5, pH reductions exceeding −0.2 (−0.3) units are projected in close to 23% (~15%) of North Atlantic deep-sea canyons and ~8% (3%) of seamounts – including seamounts proposed as sites of marine protected areas. The spatial pattern of impacts reflects the depth of the pH perturbation and does not scale linearly with atmospheric CO2 concentration. Impacts may cause negative changes of the same magnitude or exceeding the current target of 10% of preservation of marine biomes set by the convention on biological diversity, implying that ocean acidification may offset benefits from conservation/management strategies relying on the regulation of resource exploitation.
    Description: This work was supported through EU FP7 projects EPOCA (grant no. 211384) and CARBOCHANGE (grant no. 264879). D. O. B. Jones was funded by the UK Natural Environment Research Council as part of the Marine Environmental Mapping Programme (MAREMAP). S. C. Doney acknowledges support from the National Science Foundation (AGS-1048827). F. Joos acknowledges support from the Swiss National Science Foundation.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geoscientific Model Development 9 (2016): 1827-1851, doi:10.5194/gmd-9-1827-2016.
    Description: During the fifth phase of the Coupled Model Intercomparison Project (CMIP5) substantial efforts were made to systematically assess the skill of Earth system models. One goal was to check how realistically representative marine biogeochemical tracer distributions could be reproduced by models. In routine assessments model historical hindcasts were compared with available modern biogeochemical observations. However, these assessments considered neither how close modeled biogeochemical reservoirs were to equilibrium nor the sensitivity of model performance to initial conditions or to the spin-up protocols. Here, we explore how the large diversity in spin-up protocols used for marine biogeochemistry in CMIP5 Earth system models (ESMs) contributes to model-to-model differences in the simulated fields. We take advantage of a 500-year spin-up simulation of IPSL-CM5A-LR to quantify the influence of the spin-up protocol on model ability to reproduce relevant data fields. Amplification of biases in selected biogeochemical fields (O2, NO3, Alk-DIC) is assessed as a function of spin-up duration. We demonstrate that a relationship between spin-up duration and assessment metrics emerges from our model results and holds when confronted with a larger ensemble of CMIP5 models. This shows that drift has implications for performance assessment in addition to possibly aliasing estimates of climate change impact. Our study suggests that differences in spin-up protocols could explain a substantial part of model disparities, constituting a source of model-to-model uncertainty. This requires more attention in future model intercomparison exercises in order to provide quantitatively more correct ESM results on marine biogeochemistry and carbon cycle feedbacks.
    Description: This work was supported by H2020 project CRESCENDO “Coordinated Research in Earth Systems and Climate: Experiments, kNowledge, Dissemination and Outreach”, which received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 641816 and by the EU FP7 project CARBOCHANGE “Changes in carbon uptake and emissions by oceans in a changing climate” which received funding from the European community’s Seventh Framework Programme under grant agreement no. 264879. Jerry Tjiputra acknowledges ORGANIC project (239965/F20) funded by the Research Council of Norway. Christoph Heinze and Jerry Tjiputra are grateful for support through project EVA – Earth system modelling of climate variations in the Anthropocene (229771/E10) funded by the Research Council of Norway, as well as CPU-time and mass storage provided through NOTUR project NN2345K as well as NorStore project NS2345K. Keith Lindsay and Scott C. Doney acknowledge support from the National Science Foundation.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 11 (2014): 709-734, doi:10.5194/bg-11-709-2014.
    Description: Air–sea CO2 fluxes over the Pacific Ocean are known to be characterized by coherent large-scale structures that reflect not only ocean subduction and upwelling patterns, but also the combined effects of wind-driven gas exchange and biology. On the largest scales, a large net CO2 influx into the extratropics is associated with a robust seasonal cycle, and a large net CO2 efflux from the tropics is associated with substantial interannual variability. In this work, we have synthesized estimates of the net air–sea CO2 flux from a variety of products, drawing upon a variety of approaches in three sub-basins of the Pacific Ocean, i.e., the North Pacific extratropics (18–66° N), the tropical Pacific (18° S–18° N), and the South Pacific extratropics (44.5–18° S). These approaches include those based on the measurements of CO2 partial pressure in surface seawater (pCO2sw), inversions of ocean-interior CO2 data, forward ocean biogeochemistry models embedded in the ocean general circulation models (OBGCMs), a model with assimilation of pCO2sw data, and inversions of atmospheric CO2 measurements. Long-term means, interannual variations and mean seasonal variations of the regionally integrated fluxes were compared in each of the sub-basins over the last two decades, spanning the period from 1990 through 2009. A simple average of the long-term mean fluxes obtained with surface water pCO2 diagnostics and those obtained with ocean-interior CO2 inversions are −0.47 ± 0.13 Pg C yr−1 in the North Pacific extratropics, +0.44 ± 0.14 Pg C yr−1 in the tropical Pacific, and −0.37 ± 0.08 Pg C yr−1 in the South Pacific extratropics, where positive fluxes are into the atmosphere. This suggests that approximately half of the CO2 taken up over the North and South Pacific extratropics is released back to the atmosphere from the tropical Pacific. These estimates of the regional fluxes are also supported by the estimates from OBGCMs after adding the riverine CO2 flux, i.e., −0.49 ± 0.02 Pg C yr−1 in the North Pacific extratropics, +0.41 ± 0.05 Pg C yr−1 in the tropical Pacific, and −0.39 ± 0.11 Pg C yr−1 in the South Pacific extratropics. The estimates from the atmospheric CO2 inversions show large variations amongst different inversion systems, but their median fluxes are consistent with the estimates from climatological pCO2sw data and pCO2sw diagnostics. In the South Pacific extratropics, where CO2 variations in the surface and ocean interior are severely undersampled, the difference in the air–sea CO2 flux estimates between the diagnostic models and ocean-interior CO2 inversions is larger (0.18 Pg C yr−1). The range of estimates from forward OBGCMs is also large (−0.19 to −0.72 Pg C yr−1). Regarding interannual variability of air–sea CO2 fluxes, positive and negative anomalies are evident in the tropical Pacific during the cold and warm events of the El Niño–Southern Oscillation in the estimates from pCO2sw diagnostic models and from OBGCMs. They are consistent in phase with the Southern Oscillation Index, but the peak-to-peak amplitudes tend to be higher in OBGCMs (0.40 ± 0.09 Pg C yr−1) than in the diagnostic models (0.27 ± 0.07 Pg C yr−1).
    Description: M. Ishii acknowledges the Meteorological Research Institute’s priority research fund for ocean carbon cycle changes, JSPS Grant-in-Aid for Scientific Research (B) No. 22310017, and MEXT Grant-in-Aid for Scientific Research on Innovative Areas No. 24121003. Support for K. B. Rodgers came under awards NA17RJ2612 and NA08OAR4320752, and support for K. B. Rodgers and R. A. Feely from the NOAA Office of Oceanic and Atmospheric Research (OAR) through the office of Climate Observations (OCO), as well as by funds from NASA’s Research Opportunities in Space and Earth Sciences through award #NNX09AI13G. SMF’s contributions were funded through the NIWA National Centre for Atmosphere’s core research funding. S. C. Doney and I. Lima acknowledge support from US National Science Foundation award AGS-1048827. E. T. Buitenhuis acknowledges support from the EU (CarboChange, contract 264879). A. Lenton acknowledges support from the Australian Climate Change Science Program. T. Takahashi is supported by grants from the NOAA (NA08OAR4320754) and the Comer Science and Education Foundation (CSEF CP70).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 12 (2015): 681-695, doi:10.5194/bg-12-681-2015.
    Description: We assess the ability of ocean biogeochemical models to represent seasonal structures in biomass and net community production (NCP) in the Southern Ocean. Two models are compared to observations on daily to seasonal timescales in four different sections of the region. We use daily satellite fields of chlorophyll (Chl) as a proxy for biomass and in situ observations of O2 and Ar supersaturation (ΔO2 / Ar) to estimate NCP. ΔO2 / Ar is converted to the flux of biologically generated O2 from sea to air (O2 bioflux). All data are aggregated to a climatological year with a daily resolution. To account for potential regional differences within the Southern Ocean, we conduct separate analyses of sections south of South Africa, around the Drake Passage, south of Australia, and south of New Zealand. We find that the models simulate the upper range of Chl concentrations well, underestimate spring levels significantly, and show differences in skill between early and late parts of the growing season. While there is a great deal of scatter in the bioflux observations in general, the four sectors each have distinct patterns that the models pick up. Neither model exhibits a significant distinction between the Australian and New Zealand sectors and between the Drake Passage and African sectors. South of 60° S, the models fail to predict the observed extent of biological O2 undersaturation. We suggest that this shortcoming may be due either to problems with the ecosystem dynamics or problems with the vertical transport of oxygen.
    Description: This work was supported in part by funding from the National Aeronautic and Space Administration (NASA NNX08AF12G) and the National Science Foundation (NSF OPP-0823101).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...