GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus Publications on behalf of the European Geosciences Union  (1)
  • European Geosciences Union  (1)
  • Frontiers  (1)
Document type
Publisher
Years
  • 1
    Publication Date: 2020-02-06
    Description: Ammonia-oxidizing microorganisms are an important source of the greenhouse gas nitrous oxide (N2O) in aquatic environments. Identifying the impact of pH on N2O production by ammonia oxidizers is key to understanding how aquatic greenhouse gas fluxes will respond to naturally occurring pH changes, as well as acidification driven by anthropogenic CO2. We assessed N2O production rates and formation mechanisms by communities of ammonia-oxidizing bacteria (AOB) and archaea (AOA) in a lake and a marine environment, using incubation-based nitrogen (N) stable isotope tracer methods with 15N-labeled ammonium (15NH4+) and nitrite (15NO2-), and also measurements of the natural abundance N and O isotopic composition of dissolved N2O. N2O production during incubations of water from the shallow hypolimnion of Lake Lugano (Switzerland) was significantly higher when the pH was reduced from 7.54 (untreated pH) to 7.20 (reduced pH), while ammonia oxidation rates were similar between treatments. In all incubations, added NH4+ was the source of most of the N incorporated into N2O, suggesting that the main N2O production pathway involved hydroxylamine (NH2OH) and/or NO2- produced by ammonia oxidation during the incubation period. A small but significant amount of N derived from exogenous/added 15NO2- was also incorporated into N2O, but only during the reduced-pH incubations. Mass spectra of this N2O revealed that NH4+ and 15NO2- each contributed N equally to N2O by a "hybrid-N2O" mechanism consistent with a reaction between NH2OH and NO2-, or compounds derived from these two molecules. Nitrifier denitrification was not an important source of N2O. Isotopomeric N2O analyses in Lake Lugano were consistent with incubation results, as 15N enrichment of the internal N vs. external N atoms produced site preferences (25.0-34.4%) consistent with NH2OH-dependent hybrid-N2O production. Hybrid-N2O formation was also observed during incubations of seawater from coastal Namibia with 15NH4+ and NO2-. However, the site preference of dissolved N2O here was low (4.9%), indicating that another mechanism, not captured during the incubations, was important. Multiplex sequencing of 16S rRNA revealed distinct ammonia oxidizer communities: AOB dominated numerically in Lake Lugano, and AOA dominated in the seawater. Potential for hybrid N2O formation exists among both communities, and at least in AOB-dominated environments, acidification may accelerate this mechanism.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 12 (2015): 7483-7502, doi:10.5194/bg-12-7483-2015.
    Description: Nitrogen (N) is a key component of fundamental biomolecules. Hence, its cycling and availability are central factors governing the extent of ecosystems across the Earth. In the organic-lean sediment porewaters underlying the oligotrophic ocean, where low levels of microbial activity persist despite limited organic matter delivery from overlying water, the extent and modes of nitrogen transformations have not been widely investigated. Here we use the N and oxygen (O) isotopic composition of porewater nitrate (NO3−) from a site in the oligotrophic North Atlantic (Integrated Ocean Drilling Program – IODP) to determine the extent and magnitude of microbial nitrate production (via nitrification) and consumption (via denitrification). We find that NO3- accumulates far above bottom seawater concentrations (~ 21 μM) throughout the sediment column (up to ~ 50 μM) down to the oceanic basement as deep as 90 m b.s.f. (below sea floor), reflecting the predominance of aerobic nitrification/remineralization within the deep marine sediments. Large changes in the δ15N and δ18O of nitrate, however, reveal variable influence of nitrate respiration across the three sites. We use an inverse porewater diffusion–reaction model, constrained by the N and O isotope systematics of nitrification and denitrification and the porewater NO3- isotopic composition, to estimate rates of nitrification and denitrification throughout the sediment column. Results indicate variability of reaction rates across and within the three boreholes that are generally consistent with the differential distribution of dissolved oxygen at this site, though not necessarily with the canonical view of how redox thresholds separate nitrate regeneration from dissimilative consumption spatially. That is, we provide stable isotopic evidence for expanded zones of co-occurring nitrification and denitrification. The isotope biogeochemical modeling also yielded estimates for the δ15N and δ18O of newly produced nitrate (δ15NNTR (NTR, referring to nitrification) and δ18ONTR), as well as the isotope effect for denitrification (15ϵDNF) (DNF, referring to denitrification), parameters with high relevance to global ocean models of N cycling. Estimated values of δ15NNTR were generally lower than previously reported δ15N values for sinking particulate organic nitrogen in this region. We suggest that these values may be, in part, related to sedimentary N2 fixation and remineralization of the newly fixed organic N. Values of δ18ONTR generally ranged between −2.8 and 0.0 ‰, consistent with recent estimates based on lab cultures of nitrifying bacteria. Notably, some δ18ONTR values were elevated, suggesting incorporation of 18O-enriched dissolved oxygen during nitrification, and possibly indicating a tight coupling of NH4+ and NO2− oxidation in this metabolically sluggish environment. Our findings indicate that the production of organic matter by in situ autotrophy (e.g., nitrification, nitrogen fixation) supplies a large fraction of the biomass and organic substrate for heterotrophy in these sediments, supplementing the small organic-matter pool derived from the overlying euphotic zone. This work sheds new light on an active nitrogen cycle operating, despite exceedingly low carbon inputs, in the deep sedimentary biosphere.
    Description: Funding for this work was provided in part by the International Ocean Drilling Program, Woods Hole Oceanographic Institution and a grant from the Center for Dark Energy Biosphere Investigations (C-DEBI) to SW and WZ and a postdoc fellowship to CB from C-DEBI. WZ was supported in part by NSF grant OCE-1131671.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Visser, A., Wankel, S. D., Niklaus, P. A., Byrne, J. M., Kappler, A. A., & Lehmann, M. F. Impact of reactive surfaces on the abiotic reaction between nitrite and ferrous iron and associated nitrogen and oxygen isotope dynamics. Biogeosciences, 17(16), (2020): 4355-4374, doi:10.5194/bg-17-4355-2020.
    Description: Anaerobic nitrate-dependent Fe(II) oxidation (NDFeO) is widespread in various aquatic environments and plays a major role in iron and nitrogen redox dynamics. However, evidence for truly enzymatic, autotrophic NDFeO remains limited, with alternative explanations involving the coupling of heterotrophic denitrification with the abiotic oxidation of structurally bound or aqueous Fe(II) by reactive intermediate nitrogen (N) species (chemodenitrification). The extent to which chemodenitrification is caused (or enhanced) by ex vivo surface catalytic effects has not been directly tested to date. To determine whether the presence of either an Fe(II)-bearing mineral or dead biomass (DB) catalyses chemodenitrification, two different sets of anoxic batch experiments were conducted: 2 mM Fe(II) was added to a low-phosphate medium, resulting in the precipitation of vivianite (Fe3(PO4)2), to which 2 mM nitrite (NO−2) was later added, with or without an autoclaved cell suspension (∼1.96×108 cells mL−1) of Shewanella oneidensis MR-1. Concentrations of nitrite (NO−2), nitrous oxide (N2O), and iron (Fe2+, Fetot) were monitored over time in both set-ups to assess the impact of Fe(II) minerals and/or DB as catalysts of chemodenitrification. In addition, the natural-abundance isotope ratios of NO−2 and N2O (δ15N and δ18O) were analysed to constrain the associated isotope effects. Up to 90 % of the Fe(II) was oxidized in the presence of DB, whereas only ∼65 % of the Fe(II) was oxidized under mineral-only conditions, suggesting an overall lower reactivity of the mineral-only set-up. Similarly, the average NO−2 reduction rate in the mineral-only experiments (0.004±0.003 mmol L−1 d−1) was much lower than in the experiments with both mineral and DB (0.053±0.013 mmol L−1 d−1), as was N2O production (204.02±60.29 nmol L−1 d−1). The N2O yield per mole NO−2 reduced was higher in the mineral-only set-ups (4 %) than in the experiments with DB (1 %), suggesting the catalysis-dependent differential formation of NO. N-NO−2 isotope ratio measurements indicated a clear difference between both experimental conditions: in contrast to the marked 15N isotope enrichment during active NO−2 reduction (15εNO2=+10.3 ‰) observed in the presence of DB, NO−2 loss in the mineral-only experiments exhibited only a small N isotope effect (〈+1 ‰). The NO−2-O isotope effect was very low in both set-ups (18εNO2 〈1 ‰), which was most likely due to substantial O isotope exchange with ambient water. Moreover, under low-turnover conditions (i.e. in the mineral-only experiments as well as initially in experiments with DB), the observed NO−2 isotope systematics suggest, transiently, a small inverse isotope effect (i.e. decreasing NO−2 δ15N and δ18O with decreasing concentrations), which was possibly related to transitory surface complexation mechanisms. Site preference (SP) of the 15N isotopes in the linear N2O molecule for both set-ups ranged between 0 ‰ and 14 ‰, which was notably lower than the values previously reported for chemodenitrification. Our results imply that chemodenitrification is dependent on the available reactive surfaces and that the NO−2 (rather than the N2O) isotope signatures may be useful for distinguishing between chemodenitrification catalysed by minerals, chemodenitrification catalysed by dead microbial biomass, and possibly true enzymatic NDFeO.
    Description: This research has been supported by the Deutsche Forschungsgemeinschaft (DFG; grant no. GRK 1708, “Molecular principles of bacterial survival strategies”) and the University of Basel, Switzerland.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...