GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-02-06
    Description: The Cretaceous ocean witnessed intervals of profound perturbations such as volcanic input of large amounts of CO2, anoxia, eutrophication and introduction of biologically relevant metals. Some of these extreme events were characterized by size reduction and/or morphological changes of a few calcareous nannofossil species. The correspondence between intervals of high trace metal concentrations and coccolith dwarfism suggests a negative effect of these elements on nannoplankton biocalcification processes in past oceans. In order to test this hypothesis, we explored the potential effect of a mixture of trace metals on growth and morphology of four living coccolithophore species, namely Emiliania huxleyi, Gephyrocapsa oceanica, Pleurochrysis carterae and Coccolithus pelagicus. The phylogenetic history of coccolithophores shows that the selected living species are linked to Mesozoic species showing dwarfism under excess metal concentrations. The trace metals tested were chosen to simulate the environmental stress identified in the geological record and upon known trace metal interactions with living coccolithophore algae. Our laboratory experiments demonstrated that elevated trace metal concentrations, similarly to the fossil record, affect coccolithophore algae size and/or weight. Smaller coccoliths were detected in E. huxleyi and C. pelagicus, while coccoliths of G. oceanica showed a decrease in size only at the highest trace metal concentrations. P. carterae coccolith size was unresponsive to changing trace metal concentrations. These differences among species allow discriminating the most- (P. carterae), intermediate- (E. huxleyi and G. oceanica) and least-tolerant (C. pelagicus) taxa. The fossil record and the experimental results converge on a selective response of coccolithophores to metal availability. These species-specific differences must be considered before morphological features of coccoliths are used to reconstruct paleo-chemical conditions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Elsevier
    In:  Journal of Experimental Marine Biology and Ecology, 483 . pp. 74-87.
    Publication Date: 2019-02-01
    Description: Highlights • Empirical approach was used to study effects of seabird guano on marine phytoplankton. • Seabird guano enhances phytoplankton productivity in different water masses. • Nutrient run-off from seabird colonies is a significant nutrient source. Abstract Six incubation experiments were carried out to investigate the phytoplankton biomass response to seabird guano-enrichment under different nutrient regimes. Study locations included Antarctic waters of the Ross Sea and sub-Antarctic waters offshore of the Otago Peninsula, both being characterized by iron limitation of phytoplankton productivity in summer, the Sub-Tropical Frontal Zone offshore of the Snares Islands, which is generally micronutrient-replete, and the island wake waters of the Snares Islands, which have a high nutrient supply from land. In all of the experiments the increase of phytoplankton biomass was higher in the treatments with guano addition compared to the controls. Guano additions were compared to Fe and macronutrients treatments (both added in quantities similar to those in the guano treatment) to shed light on which constituent(s) of guano are responsible for the observed increases in phytoplankton biomass. Macronutrients increased the phytoplankton biomass in the Sub-Tropical Frontal Zone, however, the response was less prominent than in the Guano treatment, suggesting synergetic effects of nutrients in seabird guano on phytoplankton production. It was also found that the pattern of response varied between the water masses with 6–10 days lag phase in the Sub-Antarctic water mass and no lag phase in Sub-Tropical Frontal Zone. The calculations presented here suggest that micro- and macronutrients delivered from seabird colonies on some of the sub-Antarctic islands may provide a significant amount of limiting nutrients to the nutrient budget of the surrounding coastal waters, potentially sufficient to sustain a local phytoplankton bloom. Findings of the present study indicate that biological recycling of nutrients by seabirds likely supports marine primary production and enhances productivity of associated food webs in the vicinity of islands.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-08
    Description: Iron chemistry measurements were conducted during summer 2007 at two distinct locations in the Baltic Sea (Gotland Deep and Landsort Deep) to evaluate the role of iron for cyanobacterial bloom development in these estuarine waters. Depth profiles of Fe(II) were measured by chemiluminescent flow injection analysis (CL-FIA). Up to 0.9 nmol Fe(II) L−1 were detected in light penetrated surface waters, which constitutes up to 20% to the dissolved Fe pool. This bioavailable iron source is a major contributor to the Fe requirements of Baltic Sea phytoplankton and apparently plays a major role for cyanobacterial bloom development during our study. Measured Fe(II) half life times in oxygenated water exceed predicted values and indicate organic Fe(II) complexation. Potential sources for Fe(II) ligands, including rainwater, are discussed. Fe(II) concentrations of up to 1.44 nmol L−1 were detected at water depths below the euphotic zone, but above the oxic anoxic interface. Mixed layer depths after strong wind events are not deep enough in summer time to penetrate the oxic-anoxic boundary layer. However, Fe(II) from anoxic bottom water may enter the sub-oxic zone via diapycnal mixing and diffusion.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: Recent studies demonstrate that volcanic ash has the potential to increase phytoplankton biomass in the open ocean. However, besides fertilizing trace metals such as Fe, volcanic ash contains a variety of potentially toxic metals such as Cd, Cu, Pb, and Zn. Especially in coastal regions closer to the volcanic eruption, where ash depositions can be very high, toxic effects are possible. Here we present the first results of laboratory experiments, showing that trace metal release from different volcanic materials can have both fertilizing and toxic effects on marine phytoplankton in natural coastal seawater. The diatom Thalassiosira pseudonana generally showed higher growth rates in seawater that was in short contact with volcanic ash compared to the controls without ash addition. In contrast to that, the addition of volcanic ash had either no effect or significantly decreased the growth rate of the coccolithophoride Emiliania huxleyi. It was not possible to attribute the effects to single trace metals, however, our results suggest that Mn plays an important role in regulating the antagonistic and synergistic effects of the different trace metals. This study shows that volcanic ash can lead to changes in the phytoplankton species composition in the high fall-out area of the surface ocean. Highlights: ► We tested the effect of volcanic ash on growth of T. pseudonana and E. huxleyi ► Volcanic ash increased growth of T. pseudonana but not of E. huxleyi ► Mn seems important to regulate the effects of different trace metals from the ash ► Volcanic eruptions have the potential to change phytoplankton community structures
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-08
    Description: The speciation of dissolved iron (DFe) in the ocean is widely assumed to consist almost exclusively of Fe(III)-ligand complexes. Yet in most aqueous environments a poorly defined fraction of DFe also exists as Fe(II), the speciation of which is uncertain. Here we deploy flow injection analysis to measure in situ Fe(II) concentrations during a series of mesocosm/microcosm/multistressor experiments in coastal environments in addition to the decay rate of this Fe(II) when moved into the dark. During five mesocosm/microcosm/multistressor experiments in Svalbard and Patagonia, where dissolved (0.2 µm) Fe and Fe(II) were quantified simultaneously, Fe(II) constituted 24 %–65 % of DFe, suggesting that Fe(II) was a large fraction of the DFe pool. When this Fe(II) was allowed to decay in the dark, the vast majority of measured oxidation rate constants were less than calculated constants derived from ambient temperature, salinity, pH, and dissolved O2. The oxidation rates of Fe(II) spikes added to Atlantic seawater more closely matched calculated rate constants. The difference between observed and theoretical decay rates in Svalbard and Patagonia was most pronounced at Fe(II) concentrations 〈2 nM, suggesting that the effect may have arisen from organic Fe(II) ligands. This apparent enhancement of Fe(II) stability under post-bloom conditions and the existence of such a high fraction of DFe as Fe(II) challenge the assumption that DFe speciation in coastal seawater is dominated by ligand bound-Fe(III) species.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-04
    Description: Based on an international workshop (Gothenburg, 14–16 May 2008), this review article aims to combine interdisciplinary knowledge from coastal and open ocean research on iron biogeochemistry. The major scientific findings of the past decade are structured into sections on natural and artificial iron fertilization, iron inputs into coastal and estuarine systems, colloidal iron and organic matter, and biological processes. Potential effects of global climate change, particularly ocean acidification, on iron biogeochemistry are discussed. The findings are synthesized into recommendations for future research areas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-07-06
    Description: The interaction between iron availability and the phytoplankton elemental composition was investigated during the in situ iron fertilization experiment EIFEX and in laboratory experiments with the Southern Ocean diatom species Fragilariopsis kerguelensis and Chaetoceros dichaeta. Contrary to other in situ iron fertilization experiments we observed an increase in the BSi:POC, BSi:PON, and BSi:POP ratios within the iron fertilized patch during EIFEX. This is possibly caused by a relatively stronger increase in diatom abundance compared to other phytoplankton groups and does not necessarily represent the amount of silicification of single diatom cells. In laboratory experiments with F. kerguelensis and C. dichaeta no changes in the POC:PON, PON:POP, and POC:POP ratios were found with changing iron availability in both species. BSi:POC, BSi:PON, and BSi:POP ratios were significantly lower in the high iron treatments compared to the controls. In F. kerguelensis this was caused by a decrease in cellular BSi concentrations and therefore possibly less silicification. In C. dichaeta no change in cellular BSi concentration was found. Here lower BSi:POC, BSi:PON, and BSi:POP ratios were caused by an increase in cellular C, N, and P under high iron conditions. These results indicate that iron limitation does not always increase silicification in diatoms and that changes in the BSi:POC, BSi:PON, and BSi:POP ratios under iron fertilization in the field are caused by a variety of different mechanisms. Our results therefore imply that simple cause-and-effect relationships are not always applicable for modeling of elemental ratios.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-07-06
    Description: Iron is a key micronutrient for phytoplankton growth in the surface ocean. Yet the significance of volcanism for the marine biogeochemical iron-cycle is poorly constrained. Recent studies, however, suggest that offshore deposition of airborne ash from volcanic eruptions is a way to inject significant amounts of bio-available iron into the surface ocean. Volcanic ash may be transported up to several tens of kilometers high into the atmosphere during large-scale eruptions and fine ash may stay aloft for days to weeks, thereby reaching even the remotest and most iron-starved oceanic regions. Scientific ocean drilling demonstrates that volcanic ash layers and dispersed ash particles are frequently found in marine sediments and that therefore volcanic ash deposition and iron-injection into the oceans took place throughout much of the Earth's history. Natural evidence and the data now available from geochemical and biological experiments and satellite techniques suggest that volcanic ash is a so far underestimated source for iron in the surface ocean, possibly of similar importance as aeolian dust. Here we summarise the development of and the knowledge in this fairly young research field. The paper covers a wide range of chemical and biological issues and we make recommendations for future directions in these areas. The review paper may thus be helpful to improve our understanding of the role of volcanic ash for the marine biogeochemical iron-cycle, marine primary productivity and the ocean-atmosphere exchange of CO2 and other gases relevant for climate in the Earth's history.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: Highlights • Cu speciation was investigated for the first time in the South-East Atlantic using CLE-AdCSV. • [Cu2+] were mostly below the putative biolimiting threshold of various marine microorganisms. • Cu speciation parameters showed a poor correlation with assessed biogeochemical parameters. • Spatial differences in Cu speciation parameters suggest that biogeochemical processes and sources strongly influence Cu speciation. Organic ligands play a key role in the marine biogeochemical cycle of copper (Cu), a bio-essential element, regulating its solubility and bioavailability. However, the sources, abundance, and distribution of these ligands are still poorly understood. In this study, we examined vertical Cu speciation profiles from the South-East Atlantic (GEOTRACES section GA08). Profiles were collected from a range of ocean conditions, including the Benguela upwelling region, the oligotrophic South Atlantic Gyre, and the Congo River outflow. In general, the lack of a significant correlation between most of the parameters assessed here with Cu speciation data obscures the provenance of Cu-binding ligands, suggesting that Cu speciation in the South-East Atlantic is influenced by a complex interplay between biotic and abiotic processes. Nevertheless, the total dissolved Cu (CuT) illustrated an allochthonous origin in the working area, while Cu-binding ligands showed both an allochthonous and a biogenic, autochthonous origin. Pigment concentrations showed that the phylogeography of different microorganisms influenced the spatial features of the Cu-binding ligand pool in the South-East Atlantic. Allochthonous Cu-binding ligand sources in the upper water column are likely associated with dissolved organic matter which originated from the Congo River and the Benguela upwelling system. Deep water ligand sources could include refractory dissolved organic carbon (DOC), resuspended benthic inputs, and lateral advected inputs from the shelf margin. The degradation of L1-type ligands and/or siderophores in low oxygen conditions may also be a source of L2-type ligands in the deep. Free Cu ion levels (1.7 to 156 fM), the biologically available form of CuT, were below the putative biolimiting threshold of many marine organisms. Two classes of ligands were found in this study with total ligand concentrations ([LT]) ranging from 2.5 to 283.0 nM and conditional stability constants (logKCuL, Cu2+cond) ranging from 10.7 to 14.6. The Cu speciation values were spatially variable across the three subregions, suggesting that biogeochemical processes and sources strongly influence Cu speciation. Highlights • Cu speciation was investigated for the first time in the South-East Atlantic using CLE-AdCSV. • [Cu2+] were mostly below the putative biolimiting threshold of various marine microorganisms. • Cu speciation parameters showed a poor correlation with assessed biogeochemical parameters. • Spatial differences in Cu speciation parameters suggest that biogeochemical processes and sources strongly influence Cu speciation.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...