GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-11-06
    Description: 〈jats:p〉Abstract. Radiocarbon is a tracer that provides unique insights into the ocean's ability to sequester CO2 from the atmosphere. While spatial patterns of radiocarbon in the ocean interior can indicate the vectors and timescales for carbon transport through the ocean, estimates of the global average ocean–atmosphere radiocarbon age offset (B-Atm) place constraints on the closure of the global carbon cycle. Here, we apply a Bayesian interpolation method to compiled B-Atm data to generate global interpolated fields and mean ocean B-Atm estimates for a suite of time slices across the last deglaciation. The compiled data and interpolations confirm a stepwise and spatially heterogeneous “rejuvenation” of the ocean, suggesting that carbon was released to the atmosphere through two swings of a “ventilation seesaw” operating between the North Atlantic and both the Southern Ocean and the North Pacific. Sensitivity tests using the Bern3D model of intermediate complexity demonstrate that a portion of the reconstructed deglacial B-Atm changes may reflect “phase-attenuation” biases that are unrelated to ocean ventilation and that arise from independent atmospheric radiocarbon dynamics instead. A deglacial minimum in B-Atm offsets during the Bølling–Allerød could partly reflect such a bias. However, the sensitivity tests further demonstrate that when correcting for such biases, ocean “ventilation” could still account for at least one-third of deglacial atmospheric CO2 rise. This contribution to CO2 rise appears to have continued through the Younger Dryas, though much of the impact was likely achieved by the end of the Bølling–Allerød, indicating a key role for marine carbon cycle adjustment early in the deglacial process. Our global average B-Atm estimates place further new constraints on the long-standing mystery of global radiocarbon budget closure across the last deglaciation and suggest that glacial radiocarbon production levels are likely underestimated on average by existing reconstructions. 〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-29
    Description: The partitioning of CO2 between atmosphere and ocean depends to a large degree not only on the amount of dissolved inorganic carbon (DIC) but also on alkalinity in the surface ocean. That is also why ocean alkalinity enhancement (OAE) is discussed as one potential approach in the context of negative emission technologies. Although alkalinity is thus an important variable of the marine carbonate system, little knowledge exists on how its representation in models compares with measurements. We evaluated the large-scale alkalinity distribution in 14 CMIP6 Earth system models (ESMs) against the observational data set GLODAPv2 and show that most models, as well as the multi-model mean, underestimate alkalinity at the surface and in the upper ocean and overestimate it in the deeper ocean. The decomposition of the global mean alkalinity biases into contributions from (i) physical processes (preformed alkalinity), which include the physical redistribution of biased alkalinity originating from the soft tissue and carbonates pumps; (ii) remineralization; and (iii) carbonate formation and dissolution showed that the bias stemming from the physical redistribution of alkalinity is dominant. However, below the upper few hundred meters the bias from carbonate dissolution can gain similar importance to physical biases, while the contribution from remineralization processes is negligible. This highlights the critical need for better understanding and quantification of processes driving calcium carbonate dissolution in microenvironments above the saturation horizons and implementation of these processes into biogeochemical models. For the application of the models to assess the potential of OAE to increase ocean carbon uptake, a back-of-the-envelope calculation was conducted with each model's global mean surface alkalinity, DIC, and partial pressure of CO2 in seawater (pCO2) as input parameters. We evaluate the following two metrics: (1) the initial pCO2 reduction at the surface ocean after alkalinity addition and (2) the uptake efficiency (ηCO2) after air–sea equilibration is reached. The relative biases of alkalinity versus DIC at the surface affect the Revelle factor and therefore the initial pCO2 reduction after alkalinity addition. The global mean surface alkalinity bias relative to GLODAPv2 in the different models ranges from −85 mmol m−3 (−3.6 %) to +50 mmol m−3 (+2.1 %) (mean: −25 mmol m−3 or −1.1 %). For DIC the relative bias ranges from −55 mmol m−3 (−2.6 %) to 53 mmol m−3 (+2.5 %) (mean: −13 mmol m−3 or −0.6 %). All but two of the CMIP6 models evaluated here overestimate the Revelle factor at the surface by up to 3.4 % and thus overestimate the initial pCO2 reduction after alkalinity addition by up to 13 %. The uptake efficiency, ηCO2, then takes into account that a higher Revelle factor and a higher initial pCO2 reduction after alkalinity addition and equilibration mostly compensate for each other, meaning that resulting DIC differences in the models are small (−0.1 % to 1.1 %). The overestimation of the initial pCO2 reduction has to be taken into account when reporting on efficiencies of ocean alkalinity enhancement experiments using CMIP6 models, especially as long as the CO2 equilibrium is not reached.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Copernicus GmbH
    In:  EPIC3Geoscientific Model Development, Copernicus GmbH, 17(4), pp. 1709-1727, ISSN: 1991-959X
    Publication Date: 2024-04-29
    Description: 〈jats:p〉Abstract. In this paper we describe the implementation of the carbon isotopes 13C and 14C (radiocarbon) into the marine biogeochemistry model REcoM3. The implementation is tested in long-term equilibrium simulations where REcoM3 is coupled with the ocean general circulation model FESOM2.1, applying a low-resolution configuration and idealized climate forcing. Focusing on the carbon-isotopic composition of dissolved inorganic carbon (δ13CDIC and Δ14CDIC), our model results are largely consistent with reconstructions for the pre-anthropogenic period. Our simulations also exhibit discrepancies, e.g. in upwelling regions and the interior of the North Pacific. Some of these differences are due to the limitations of our ocean circulation model setup, which results in a rather shallow meridional overturning circulation. We additionally study the accuracy of two simplified modelling approaches for dissolved inorganic 14C, which are faster (15 % and about a factor of five, respectively) than the complete consideration of the marine radiocarbon cycle. The accuracy of both simplified approaches is better than 5 %, which should be sufficient for most studies of Δ14CDIC. 〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Copernicus GmbH
    In:  EPIC3Climate of the Past, Copernicus GmbH, 20(4), pp. 991-1015, ISSN: 1814-9332
    Publication Date: 2024-04-29
    Description: Laboratory experiments showed that the isotopic fractionation of δ13C and of δ18O during calcite formation of planktic foraminifera are species-specific functions of ambient CO32- concentration. This effect became known as the carbonate ion effect (CIE), whose role for the interpretation of marine sediment data will be investigated here in an in-depth analysis of the 13C cycle. For this investigation, we constructed new 160 kyr long mono-specific stacks of changes in both δ13C and δ18O from either the planktic foraminifera Globigerinoides ruber (rub) or Trilobatus sacculifer (sac) from 112 and 40 marine records, respectively, from the wider tropics (latitudes below 38°). Both mono-specific time series Δ(δ13Crub) and Δ(δ13Csac) are very similar to each other, and a linear regression through a scatter plot of both data sets has a slope of ∼ 0.99 – although the laboratory-based CIE for both species differs by a factor of nearly 2, implying that they should record distinctly different changes in δ13C, if we accept that the carbonate ion concentration changes on glacial–interglacial timescales. For a deeper understanding of the 13C cycle, we use the Solid Earth version of the Box model of the Isotopic Carbon cYCLE (BICYLE-SE) to calculate how surface-ocean CO32- should have varied over time in order to be able to calculate the potential offsets which would by caused by the CIE quantified in culture experiments. Our simulations are forced with atmospheric reconstructions of CO2 and δ13CO2 derived from ice cores to obtain a carbon cycle which should at least at the surface ocean be as close as possible to expected conditions and which in the deep ocean largely agrees with the carbon isotope ratio of dissolved inorganic carbon (DIC), δ13CDIC, as reconstructed from benthic foraminifera. We find that both Δ(δ13Crub) and Δ(δ13Csac) agree better with changes in simulated δ13CDIC when ignoring the CIE than those time series which were corrected for the CIE. The combination of data- and model-based evidence for the lack of a role for the CIE in Δ(δ13Crub) and Δ(δ13Csac) suggests that the CIE as measured in laboratory experiments is not directly transferable to the interpretation of marine sediment records. The much smaller CIE-to-glacial–interglacial-signal ratio in foraminifera δ18O, when compared to δ13C, prevents us from drawing robust conclusions on the role of the CIE in δ18O as recorded in the hard shells of both species. However, theories propose that the CIE in both δ13C and δ18O depends on the pH in the surrounding water, suggesting that the CIE should be detectable in neither or both of the isotopes. Whether this lack of role of the CIE in the interpretation of planktic paleo-data is a general feature or is restricted to the two species investigated here needs to be checked with further data from other planktic foraminiferal species.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...