GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus GmbH  (8)
  • 1
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 19, No. 18 ( 2019-09-24), p. 11791-11801
    Abstract: Abstract. Haze pollution caused by PM2.5 is the largest air quality concern in China in recent years. Long-term measurements of PM2.5 and the precursors and chemical speciation are crucially important for evaluating the efficiency of emission control, understanding formation and transport of PM2.5 associated with the change of meteorology, and accessing the impact of human activities on regional climate change. Here we reported long-term continuous measurements of PM2.5, chemical components, and their precursors at a regional background station, the Station for Observing Regional Processes of the Earth System (SORPES), in Nanjing, eastern China, since 2011. We found that PM2.5 at the station has experienced a substantial decrease (−9.1 % yr−1), accompanied by even a very significant reduction of SO2 (−16.7 % yr−1), since the national “Ten Measures of Air” took action in 2013. Control of open biomass burning and fossil-fuel combustion are the two dominant factors that influence the PM2.5 reduction in early summer and winter, respectively. In the cold season (November–January), the nitrate fraction was significantly increased, especially when air masses were transported from the north. More NH3 available from a substantial reduction of SO2 and increased oxidization capacity are the main factors for the enhanced nitrate formation. The changes of year-to-year meteorology have contributed to 24 % of the PM2.5 decrease since 2013. This study highlights several important implications on air pollution control policy in China.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 21, No. 19 ( 2021-10-06), p. 14789-14814
    Abstract: Abstract. Oxygenated organic molecules (OOMs) are the crucial intermediates linking volatile organic compounds (VOCs) to secondary organic aerosols (SOAs) in the atmosphere, but comprehensive understanding of the characteristics of OOMs and their formation from VOCs is still missing. Ambient observations of OOMs using recently developed mass spectrometry techniques are still limited, especially in polluted urban atmospheres where VOCs and oxidants are extremely variable and complex. Here, we investigate OOMs, measured by a nitrate-ion-based chemical ionization mass spectrometer at Nanjing in eastern China, through performing positive matrix factorization on binned mass spectra (binPMF). The binPMF analysis reveals three factors about anthropogenic VOC (AVOC) daytime chemistry, three isoprene-related factors, three factors about biogenic VOC (BVOC) nighttime chemistry, and three factors about nitrated phenols. All factors are influenced by NOx in different ways and to different extents. Over 1000 non-nitro molecules have been identified and then reconstructed from the selected solution of binPMF, and about 72 % of the total signals are contributed by nitrogen-containing OOMs, mostly regarded as organic nitrates formed through peroxy radicals terminated by nitric oxide or nitrate-radical-initiated oxidations. Moreover, multi-nitrates account for about 24 % of the total signals, indicating the significant presence of multiple generations, especially for isoprene (e.g., C5H10O8N2 and C5H9O10N3). Additionally, the distribution of OOM concentration on the carbon number confirms their precursors are driven by AVOCs mixed with enhanced BVOCs during summer. Our results highlight the decisive role of NOx in OOM formation in densely populated areas, and we encourage more studies on the dramatic interactions between anthropogenic and biogenic emissions.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 18, No. 23 ( 2018-12-05), p. 17177-17190
    Abstract: Abstract. Particulate nitrate contributes a large fraction of secondary aerosols. Despite understanding of its important role in regional air quality and global climate, long-term continuous measurements are rather limited in China. In this study, we conducted online measurement of PM2.5 (particulate matter with diameters less than 2.5 µm) nitrate for 2 years from March 2014 to February 2016 using the Monitor for AeRosols and Gases in ambient Air (MARGA) in the western Yangtze River Delta (YRD), eastern China, and investigate the main factors that influenced its temporal variations and formation pathways. Compared to other sites in China, an overall high concentration of particulate nitrate was observed, with a mean value of 15.8 µg m−3 (0.5 to 92.6 µg m−3). Nitrate on average accounted for 32 % of the total mass of water-soluble ions and the proportion increased with PM loading, indicating that nitrate is a major driver of haze pollution episodes in this region. Sufficient ammonia drove most nitrate into the particle phase in the form of ammonium nitrate. A typical seasonal cycle of nitrate was observed, with the concentrations in winter on average 2 times higher than those in summer mainly due to different meteorological conditions. In summer, the diurnal variation of particulate nitrate was determined by thermodynamic equilibrium, resulting in a much lower concentration during daytime despite a considerable photochemical production. Air masses from the polluted YRD and biomass burning region contributed to the high nitrate concentration during summer. In winter, particulate nitrate did not reveal an evident diurnal variation. Regional transport from northern China played an important role in enhancing nitrate concentration. A total of 18 nitrate episodes were selected to understand the processes that drive the formation of high concentration of nitrate. Rapid nitrate formation was observed during the pre-episode (the day before nitrate episode day) nights, and dominated the increase of total water-soluble ions. Calculated nitrate from N2O5 hydrolysis was highly correlated to and accounted for 80 % of the observed nitrate, suggesting that N2O5 hydrolysis was a major contributor to the nitrate episodes. Our results suggested that rapid formation of nitrate could be a main cause for extreme aerosol pollution events in the YRD during winter, and illustrated the urgent need to control NOx emission.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 18, No. 12 ( 2018-06-28), p. 9061-9074
    Abstract: Abstract. Brown carbon (BrC), a certain group of organic carbon (OC) with strong absorption from the visible (VIS) to ultraviolet (UV) wavelengths, makes a considerable contribution to light absorption on both global and regional scales. A high concentration and proportion of OC has been reported in China, but studies of BrC absorption based on long-term observations are rather limited in this region. In this study, we reported 3-year results of light absorption of BrC based on continuous measurement at the Station for Observing Regional Processes of the Earth System (SORPES) in the Yangtze River Delta, China, combined with Mie theory calculation. Light absorption of BrC was obtained using an improved absorption Ångström exponent (AAE) segregation method. The AAE of non-absorbing coated black carbon (BC) at each time step is calculated based on Mie theory simulation, together with single particle soot photometer (SP2) and aethalometer observations. By using this improved method, the variation of the AAE over time is taken into consideration, making it applicable for long-term analysis. The annual average light absorption coefficient of BrC (babs_BrC) at 370 nm was 6.3 Mm−1 at the SORPES station. The contribution of BrC to total aerosol absorption (PBrC) at 370 nm ranged from 10.4 to 23.9 % (10th and 90th percentiles, respectively), and reached up to ∼ 33 % in the open-biomass-burning-dominant season and winter. Both babs_BrC and PBrC exhibited clear seasonal cycles with two peaks in later spring/early summer (May–June, babs_BrC ∼ 6 Mm−1, PBrC ∼ 17 %) and winter (December, babs_BrC ∼ 15 Mm−1, PBrC ∼ 22 %), respectively. Lagrangian modeling and the chemical signature observed at the site suggested that open biomass burning and residential coal/biofuel burning were the dominant sources influencing BrC in the two seasons, respectively.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 18, No. 8 ( 2018-04-18), p. 5265-5292
    Abstract: Abstract. Aerosol optical properties (AOPs) and supporting parameters – particle number size distributions, PM2.5 mass concentrations, and the concentrations of trace gases (NOx and NOy) – were measured at SORPES, a regional background station in Nanjing, China from June 2013 to May 2015. The aerosol was highly scattering: the average scattering coefficient was σsp=403 ± 314 Mm−1, the absorption coefficient σap=26 ± 19 Mm−1, and the single-scattering albedo SSA = 0.93 ± 0.03 for green light. The SSA in Nanjing appears to be slightly higher than published values from several other sites in China and elsewhere. The average Ångström exponent of absorption (AAE) for the wavelength range 370–950 nm was 1.04 and the AAE range was 0.7–1.4. These AAE values can be explained with different amounts of non-absorbing coating on pure black carbon (BC) cores and different core sizes rather than contribution by brown carbon. The AOPs had typical seasonal cycles with high σsp and σap in winter and low ones in summer: the averages were σsp=544 ± 422 and σap=36 ± 24 Mm−1 in winter and σsp=342 ± 281 and σap=20 ± 13 Mm−1 in summer. The intensive AOPs had no clear seasonal cycles, the variations in them were rather related to the evolution of pollution episodes. The diurnal cycles of the intensive AOPs were clear and in agreement with the cycle of the particle number size distribution. The diurnal cycle of SSA was similar to that of the air photochemical age, suggesting that the darkest aerosol originated from fresh traffic emissions. A Lagrangian retroplume analysis showed that the potential source areas of high σsp and σap are mainly in eastern China. Synoptic weather phenomena dominated the cycle of AOPs on a temporal scale of 3–7 days. During pollution episodes, modeled boundary layer height decreased, whereas PM2.5 concentrations and σsp and σap typically increased gradually and remained high during several days but decreased faster, sometimes by even more than an order of magnitude within some hours. During the growth phase of the pollution episodes the intensive AOPs evolved clearly. The mass scattering efficiency MSE of PM2.5 grew during the extended pollution episodes from ∼ 4 to ∼ 6 m2 g−1 and the mass fraction of BCe decreased from ∼ 10 to ∼ 3 % during the growth phase of the episodes. Particle growth resulted in the backscatter fraction decreasing from more than 0.16 to less than 0.10, SSA growing from less than 0.9 to more than 0.95, and radiative forcing efficiency (RFE) changing from less than −26 W m−2 to more than −24 W m−2, which means that the magnitude of RFE decreased. The RFE probability distribution at SORPES was clearly narrower than at a clean background site which is in agreement with a published RFE climatology.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 22, No. 18 ( 2022-09-19), p. 12207-12220
    Abstract: Abstract. During the COVID-19 lockdown, the dramatic reduction of anthropogenic emissions provided a unique opportunity to investigate the effects of reduced anthropogenic activity and primary emissions on atmospheric chemical processes and the consequent formation of secondary pollutants. Here, we utilize comprehensive observations to examine the response of atmospheric new particle formation (NPF) to the changes in the atmospheric chemical cocktail. We find that the main clustering process was unaffected by the drastically reduced traffic emissions, and the formation rate of 1.5 nm particles remained unaltered. However, particle survival probability was enhanced due to an increased particle growth rate (GR) during the lockdown period, explaining the enhanced NPF activity in earlier studies. For GR at 1.5–3 nm, sulfuric acid (SA) was the main contributor at high temperatures, whilst there were unaccounted contributing vapors at low temperatures. For GR at 3–7 and 7–15 nm, oxygenated organic molecules (OOMs) played a major role. Surprisingly, OOM composition and volatility were insensitive to the large change of atmospheric NOx concentration; instead the associated high particle growth rates and high OOM concentration during the lockdown period were mostly caused by the enhanced atmospheric oxidative capacity. Overall, our findings suggest a limited role of traffic emissions in NPF.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Mechanical Sciences, Copernicus GmbH, Vol. 12, No. 1 ( 2021-03-01), p. 249-257
    Abstract: Abstract. In recent years, hydraulic quadruped robots have received increasing attention because of their strong environment adaptability and high load capacity. However, weight control is an important issue for mobile systems in consideration of limited onboard energy. Overweight will cause extra load on joints, reduce the flexibility of movement, and consume more power. Topology optimization is an effective tool to reduce volume and weight while maintaining enough strength. This article takes both optimal geometries and contained flow channels into consideration and gives solutions to structure design and good print quality in a manifold used on a robot. Using topology optimization, the volume of the manifold is further reduced by 50.7 %, while it can meet the mechanical requirement for actual application.
    Type of Medium: Online Resource
    ISSN: 2191-916X
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2630018-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 18, No. 16 ( 2018-08-20), p. 11779-11791
    Abstract: Abstract. Highly oxygenated multifunctional compounds (HOMs) play a key role in new particle formation (NPF), but their quantitative roles in different environments of the globe have not been well studied yet. Frequent NPF events were observed at two “flagship” stations under different environmental conditions, i.e. a remote boreal forest site (SMEAR II) in Finland and a suburban site (SORPES) in polluted eastern China. The averaged formation rate of 6 nm particles and the growth rate of 6–30 nm particles were 0.3 cm−3 s−1 and 4.5 nm h−1 at SMEAR II compared to 2.3 cm−3 s−1 and 8.7 nm h−1 at SORPES, respectively. To explore the differences of NPF at the two stations, the HOM concentrations and NPF events at two sites were simulated with the MALTE-BOX model, and their roles in NPF and particle growth in the two distinctly different environments are discussed. The model provides an acceptable agreement between the simulated and measured concentrations of sulfuric acid and HOMs at SMEAR II. The sulfuric acid and HOM organonitrate concentrations are significantly higher but other HOM monomers and dimers from monoterpene oxidation are lower at SORPES compared to SMEAR II. The model simulates the NPF events at SMEAR II with a good agreement but underestimates the growth of new particles at SORPES, indicating a dominant role of anthropogenic processes in the polluted environment. HOMs from monoterpene oxidation dominate the growth of ultrafine particles at SMEAR II while sulfuric acid and HOMs from aromatics oxidation play a more important role in particle growth. This study highlights the distinct roles of sulfuric acid and HOMs in NPF and particle growth in different environmental conditions and suggests the need for molecular-scale measurements in improving the understanding of NPF mechanisms in polluted areas like eastern China.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...