GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Solid Earth, Copernicus GmbH, Vol. 11, No. 6 ( 2020-11-13), p. 2075-2095
    Abstract: Abstract. The strength properties of fault rocks at shearing rates spanning the transition from crystal–plastic flow to frictional slip play a central role in determining the distribution of crustal stress, strain, and seismicity in tectonically active regions. We review experimental and microphysical modelling work, which is aimed at elucidating the processes that control the transition from pervasive ductile flow of fault rock to rate-and-state-dependent frictional (RSF) slip and to runaway rupture, carried out at Utrecht University in the past 2 decades or so. We address shear experiments on simulated gouges composed of calcite, halite–phyllosilicate mixtures, and phyllosilicate–quartz mixtures performed under laboratory conditions spanning the brittle–ductile transition. With increasing shear rate (or decreasing temperature), the results consistently show transitions from (1) stable velocity-strengthening (v-strengthening) behaviour, to potentially unstable v-weakening behaviour, and (2) back to v strengthening. Sample microstructures show that the first transition seen at low shear rates and/or high temperatures represents a switch from pervasive, fully ductile deformation to frictional sliding involving dilatant granular flow in localized shear bands where intergranular slip is incompletely accommodated by creep of individual mineral grains. A recent microphysical model, which treats fault rock deformation as controlled by competition between rate-sensitive (diffusional or crystal–plastic) deformation of individual grains and rate-insensitive sliding interactions between grains (granular flow), predicts both transitions well. Unlike classical RSF approaches, this model quantitatively reproduces a wide range of (transient) frictional behaviours using input parameters with direct physical meaning, with the latest progress focusing on incorporation of dynamic weakening processes characterizing co-seismic fault rupture. When implemented in numerical codes for crustal fault slip, the model offers a single unified framework for understanding slip patch nucleation and growth to critical (seismogenic) dimensions, as well as for simulating the entire seismic cycle.
    Type of Medium: Online Resource
    ISSN: 1869-9529
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2545676-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Copernicus GmbH ; 2020
    In:  Solid Earth Vol. 11, No. 4 ( 2020-07-26), p. 1399-1422
    In: Solid Earth, Copernicus GmbH, Vol. 11, No. 4 ( 2020-07-26), p. 1399-1422
    Abstract: Abstract. Previous studies show that organic-rich fault patches may play an important role in promoting unstable fault slip. However, the frictional properties of rock materials with nearly 100 % organic content, e.g., coal, and the controlling microscale mechanisms remain unclear. Here, we report seven velocity stepping (VS) experiments and one slide–hold–slide (SHS) friction experiment performed on simulated fault gouges prepared from bituminous coal collected from the upper Silesian Basin of Poland. These experiments were performed at 25–45 MPa effective normal stress and 100 ∘C, employing sliding velocities of 0.1–100 µm s−1 and using a conventional triaxial apparatus plus direct shear assembly. All samples showed marked slip-weakening behavior at shear displacements beyond ∼ 1–2 mm, from a peak friction coefficient approaching ∼0.5 to (nearly) steady-state values of ∼0.3, regardless of effective normal stress or whether vacuum-dry or flooded with distilled (DI) water at 15 MPa pore fluid pressure. Analysis of both unsheared and sheared samples by means of microstructural observation, micro-area X-ray diffraction (XRD) and Raman spectroscopy suggests that the marked slip-weakening behavior can be attributed to the development of R-, B- and Y-shear bands, with internal shear-enhanced coal crystallinity development. The SHS experiment performed showed a transient peak healing (restrengthening) effect that increased with the logarithm of hold time at a linearized rate of ∼0.006. We also determined the rate dependence of steady-state friction for all VS samples using a full rate and state friction approach. This showed a transition from velocity strengthening to velocity weakening at slip velocities 〉1 µm s−1 in the coal sample under vacuum-dry conditions but at 〉10 µm s−1 in coal samples exposed to DI water at 15 MPa pore pressure. The observed behavior may be controlled by competition between dilatant granular flow and compaction enhanced by the presence of water. Together with our previous work on the frictional properties of coal–shale mixtures, our results imply that the presence of a weak, coal-dominated patch on faults that cut or smear out coal seams may promote unstable, seismogenic slip behavior, though the importance of this in enhancing either induced or natural seismicity depends on local conditions.
    Type of Medium: Online Resource
    ISSN: 1869-9529
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2545676-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Safety of Nuclear Waste Disposal, Copernicus GmbH, Vol. 2 ( 2023-09-06), p. 109-111
    Abstract: Abstract. For the underground disposal of high-level nuclear waste in rock salt formations, the safety concept includes the backfilling of open cavities with crushed salt. For the prognosis of the sealing function of the backfill for the safe containment of the radioactive waste, it is crucial to have a comprehensive process understanding of the crushed-salt compaction behavior. The crushed-salt compaction process is influenced by internal properties (e.g., grain size, mineralogy, and moisture content) and boundary conditions (e.g., temperature, stress state, and compaction rate) and, therefore, involves several coupled thermal–hydro–mechanical (THM) processes (Hansen et al., 2014; Kröhn et al., 2017). With the paradigm shift from the limited release of radionuclides to safe containment due to the German Repository Site Selection Act passed in 2017, the importance of crushed salt as geotechnical barrier has increased, with a focus on the evolution of its hydraulic properties. Based on the knowledge gaps in the current process understanding, the “Compaction of crushed salt for safe containment” (KOMPASS) projects were initiated to improve the scientific basis behind using crushed salt for the long-term isolation of high-level nuclear waste within rock salt repositories. The efforts to improve the prediction of crushed-salt compaction begun during the first phase of the KOMPASS projects (Czaikowski et al., 2020) and were followed up in a second phase ending in June 2023. The primary achievements of the projects are as follows (Czaikowski et al., 2020; Friedenberg et al., 2022): specification of the KOMPASS reference material, an easily available and reproducible synthetic crushed-salt material, for generic investigations; development of pre-compaction methods and successful production of samples in the short term and under in situ loading conditions; formulation of an extended laboratory program addressing the isolated investigation of known relevant factors influencing the compaction behavior of crushed salt (Düsterloh et al., 2022); execution of long-term compaction tests addressing isotropic and deviatoric load changes, temperature, and compaction state; construction of a backfill body using the KOMPASS reference material in the Sondershausen mine through collaboration with the SAVER (Entwicklung eines salzgrusbasierten Versatzkonzepts unter der Option Rückholbarkeit) project (Schaarschmidt and Friedenberg, 2022); advancement of the tools for microstructure investigation methods (Svensson and Laurich, 2022); generation (first stages) of a microphysical process list combining literature research with our own findings; benchmarking of long-term compaction test for model development and optimization of various existing models as well as the development of new models; application of a virtual demonstrator (2D model representing a backfilled drift in rock salt) for the visualization of developments and the quantification of the models (Rabbel, 2022). In summary, the KOMPASS projects contributed to the reduction of uncertainties and the strengthening of the safety case for using crushed salt within rock salt repositories.
    Type of Medium: Online Resource
    ISSN: 2749-4802
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2023
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...